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Abstract In the paper we go on a development of e�ective new chaos geomentry

and non-linear analysis technique to studying chaotic features of di�erent nature

systems. Here there are presented a general for,alism of a chaos-geometrical

appraoch to treating, analysing, modelling and forecasting chaotic dynamics

of environmental radioactivity systems. A usually, an approach combines

together application of the advanced mltifractal formalism, advanced mutual

information scheme, Grrasberger-Procachi algorythm, Lyapunov exponent's

analysis, method of precicted phase trajectories, memory functions method ,

neural networks algorythms etc.
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1. Introduction

In this paper we go on our work on application of the new e�ective chaos theory

and advanced non-linear analysis technique to studying chaotic features of dif-

ferent nature systems. The theoretical basis's of the chaos-geometric combined

approach to treating of chaotic behaviour of complex dynamical systems are in

details in series of ref. [1-10]. Generally, an approach combines together applica-

tion of the advanced mutual information scheme, Grassberger-Procachi algory-
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thm, Lyapunov exponent's analysis etc. It is important to note that this approch

has been successfully applied to studying dynamics not only mathematical and

physical systems. Very impressive application is the investigated dynamics of the

atmospheric pollutants concentrations and forecasting their temporal evolution.

Besides, in Ref [2] it has been numerically vstudied a chaotic dynamics of the

pollutants concentration in some hydroecological, namely, water system. The

successful application of new chaos-geometrical approach to studying dynamics

of the di�erent nature systems demonstrates its universal character.

Here, starting from our previous works (see, for example [1-7]), we present

the possibilities of using a chaos-geometric approach to treating chaotic dynam-

ics of environmental radioactivity systems. In fact, speech is about a perspective

application of a chaos geometry tools to treating very important applied prob-

lem. Let us remind that hitherto the di�erent mathematical modeling methods

deal with serious principal and numerical di�culties under studying the key ra-

dioecological transfer and e�ects such as radionuclide cycles in the ecosystems,

radionuclide transfer to biota in inland waters, biological e�ects of radiation

exposure to living organisms etc.

2. Chaos-geometric approach to treating chaotic dynamics with

application to environmental radioactivity systems

As our approach has been presented earlier [1-11], here we are limited only

by the key moments. In fact the main task is resulted in reformulation and

introducing the key parameters in all computational methods, algorythms and

schemes of a chaos-geometrical appraoch. Naturally, the numerical and compu-

tational features of the methods remain unchanged. So here we only deal with

formal task of rede�nition and reformulation of the key dynamical parameters.

Accordingly to [1,8,11] let us formally consider scalar measurements for any

environmental radioactivity systems s(n) = s(t0 + n∆t) = s(n), where t0 is

the start time, ∆t is the time step, and is n the number of the measurements.

Further it is necessary to reconstruct phase space using as well as possible in-

formation contained in the s(n). Such a reconstruction results in a certain set

of d-dimensional vectors y(n) replacing the scalar measurements. Packard et al.

[14] introduced the method of using time-delay coordinates to reconstruct the

phase space of an observed dynamical system. The direct use of the lagged vari-

ables s(n+ τ), where τ is some integer to be determined, results in a coordinate

system in which the structure of orbits in phase space can be captured.
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Figure 1. Chaos and neural network-geometric approach to nonlinear analysis

and forecast chaotic dynamics processes in environmental radioactivity systems.

Then using a collection of time lags to create a vector in d dimensions,

y(n) = [s(n), s(n + τ), s(n + 2τ), . . . , s(n + (d− 1)τ)], (1)

the required coordinates are provided. In a nonlinear system, the s(n+jτ) are

some unknown nonlinear combination of the actual physical variables that com-

prise the source of the measurements. The dimension d is called the embedding

dimension, dE .

According to Mane and Takens [12], any time lag will be acceptable is not

terribly useful for extracting physics from data. If τ is chosen too small, then the

coordinates s(n+ jτ) and s(n+ (j+ 1)τ) are so close to each other in numerical

value that they cannot be distinguished from each other. Similarly, if τ is too

large, then s(n+jτ) and s(n+(j+1)τ) are completely independent of each other

in a statistical sense. Also, if τ is too small or too large, then the correlation

dimension of attractor can be under- or overestimated respectively [3]. It is

therefore necessary to choose some intermediate (and more appropriate) position

between above cases. First approach is to compute the linear autocorrelation

function

CL(δ) =
1
N

∑N
m=1[s(m+ δ)− s̄][s(m)− s̄]

1
N

∑N
m=1[s(m)− s̄]2

, (2)

where s̄ = 1
N

∑N
m=1 s(m)
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and to look for that time lag where CL(δ) �rst passes through zero. This

gives a good hint of choice for τ at that s(n+ jτ) and s(n+ (j+ 1)τ) are linearly

independent. However, a linear independence of two variables does not mean

that these variables are nonlinearly independent since a nonlinear relationship

can di�ers from linear one. It is therefore preferably to utilize approach with a

nonlinear concept of independence, e.g. the average mutual information. Brie�y,

the concept of mutual information can be described as follows. Let there are two

systems, A and B, with measurements ai and bk. The amount one learns in bits

about a measurement of ai from measurement of bk is given by arguments of

information theory [3,7]

IAB(ai, bk) = log2

(
PAB(ai, bk)

PA(ai)PB(bk)

)
, (3)

where the probability of observing a out of the set of all A is PA(ai), and the

probability of �nding b in a measurement B is PB(bi), and the joint probability

of the measurement of a and b is PAB(ai,bk). The mutual information I of two

measurements ai and bk is symmetric and non-negative, and equals to zero if only

the systems are independent. The average mutual information between any value

ai from system A and bk from B is the average over all possible measurements

of IAB(ai, bk),

IAB(τ) =
∑
ai,bk

PAB(ai, bk)IAB(ai, bk) (4)

To place this de�nition to a context of observations from a certain physical

system, let us think of the sets of measurements s(n) as the A and of the mea-

surements a time lag τ later, s(n+ τ), as B set. The average mutual information

between observations at n and n + τ is then

IAB(τ) =
∑
ai,bk

PAB(ai, bk)IAB(ai, bk) (5)

Now we have to decide what property of I(τ) we should select, in order to

establish which among the various values of τ we should use in making the data

vectors y(n). One could remind that the autocorrelation function and average

mutual information can be considered as analogues of the linear redundancy and

general redundancy, respectively, which was applied in the test for nonlinearity.

The general redundancies detect all dependences in the time series, while the

linear redundancies are sensitive only to linear structures. Further, a possible

nonlinear nature of process resulting in the vibrations amplitude level variations

can be concluded.



74 A.V. Glushkov, V.M. Kuzakon, et al

The goal of the embedding dimension determination is to reconstruct a Eu-

clidean space Rd large enough so that the set of points dA can be unfolded

without ambiguity. In accordance with the embedding theorem, the embedding

dimension, dE , must be greater, or at least equal, than a dimension of attrac-

tor, dA, i.e. dE > dA. However, two problems arise with working in dimensions

larger than really required by the data and time-delay embedding [1,7,13,19].

First, many of computations for extracting interesting properties from the data

require searches and other operations in Rd whose computational cost rises ex-

ponentially with d. Second, but more signi�cant from the physical point of view,

in the presence of noise or other high dimensional contamination of the observa-

tions, the extra dimensions are not populated by dynamics, already captured by

a smaller dimension, but entirely by the contaminating signal. In too large an

embedding space one is unnecessarily spending time working around aspects of

a bad representation of the observations which are solely �lled with noise. It is

therefore necessary to determine the dimension dA. There are several standard

approaches to reconstruct the attractor dimension (see, e.g., [3,7-12]), but let us

consider in this study two methods only. The correlation integral analysis is one

of the widely used techniques to investigate the signatures of chaos in a time

series. The analysis uses the correlation integral, C(r), to distinguish between

chaotic and stochastic systems. To compute the correlation integral, the algo-

rithm of Grassberger and Procaccia [17] is the most commonly used approach.

According to this algorithm, the correlation integral is

C(r) = lim
N→∞

2

N(n− 1)

∑
i, j

(1 ≤ i < j ≤ N)

H (r − ||yi − yj ||) (6)

whereH is the Heaviside step function withH(u) = 1 for u > 0 andH(u) = 0

for u ≤, r is the radius of sphere centered on yi or yj , and N is the number of

data measurements. If the time series is characterized by an attractor, then the

integral C(r) is related to the radius r given by

d = lim

r → 0

N →∞

logC(r)

log r
, (7)

where d is correlation exponent. The method of surrogate data is one othe

important methods of a general chaos-geometric approach [1-22]. It is an ap-

proach that makes use of the substitute data generated in accordance to the
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probabilistic structure underlying the original data [3,7-11]. This means that

the surrogate data possess some of the properties, such as the mean, the stan-

dard deviation, the cumulative distribution function, the power spectrum, etc.,

but are otherwise postulated as random, generated according to a speci�c null

hypothesis. Here, the null hypothesis consists of a candidate linear process, and

the goal is to reject the hypothesis that the original data have come from a

linear stochastic process. One reasonable statistics is obtained as follows. If we

denote Qorig as the statistic computed for the original time series and Qsi for

ith surrogate series generated under the null hypothesis and let µs and σs de-

note, respectively, the mean and standard deviation of the distribution of Qs,

then the measure of signi�cance S is given by S =
|Qorig−µs|

σs
. An S value of

∼ 2 cannot be considered very signi�cant, whereas an S value of ∼10 is highly

signi�cant. To detect nonlinearity in the amplitude level data, the one hundred

realizations of surrogate data sets were generated according to a null hypothesis

in accordance to the probabilistic structure underlying the original data. Often,

a signi�cant di�erence in the estimates of the correlation exponents, between the

original and surrogate data sets, can be observed. In the case of the original data,

a saturation of the correlation exponent is observed after a certain embedding

dimension value (i.e., 6), whereas the correlation exponents computed for the

surrogate data sets continue increasing with the increasing embedding dimen-

sion. The high signi�cance values of the statistic indicate that the null hypothesis

(the data arise from a linear stochastic process) can be rejected and hence the

original data might have come from a nonlinear process. It is worth consider

another method for determining dE that comes from asking the basic question

addressed in the embedding theorem: when has one eliminated false crossing of

the orbit with itself which arose by virtue of having projected the attractor into

a too low dimensional space? By examining this question in dimension one, then

dimension two, etc. until there are no incorrect or false neighbours remaining,

one should be able to establish, from geometrical consideration alone, a value

for the necessary embedding dimension. Advanced version is presented in Ref.

[3]

The LE are the dynamical invariants of the nonlinear system. In a general

case, the orbits of chaotic attractors are unpredictable, but there is the limited

predictability of chaotic physical system, which is de�ned by the global and lo-

cal LE. A negative exponent indicates a local average rate of contraction while

a positive value indicates a local average rate of expansion. In the chaos the-

ory, the spectrum of LE is considered a measure of the e�ect of perturbing the
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initial conditions of a dynamical system. In fact, if one manages to derive the

whole spectrum of the LE, other invariants of the system, i.e. KE and attractor's

dimension can be found. The KE, K, measures the average rate at which infor-

mation about the state is lost with time. An estimate of this measure is the sum

of the positive LE. The inverse of the KE is equal to an average predictability.

Estimate of dimension of the attractor is provided by the Kaplan and Yorke

conjecture:

dL = j +

∑j
α=1 λα
|λj+1|

, (8)

where j is such that
∑j
α=1 λα > 0 and

∑j+1
α=1 λα < 0, and the LE λα are

taken in descending order. There are a few approaches to computing the LE.

One of them computes the whole spectrum and is based on the Jacobi matrix

of system [3]. In the case where only observations are given and the system

function is unknown, the matrix has to be estimated from the data. To calculate

the spectrum of the LE from the amplitude level data, one could determine the

time delay τ and embed the data in the four-dimensional space. In this point

it is very important to determine the Kaplan-Yorke dimension and compare it

with the correlation dimension, de�ned by the Grassberger-Procaccia algorithm.

The estimations of the KE and average predictability can further show a limit,

up to which the amplitude level data can be on average predicted.

3. Conclusions

We brie�y considered the theoretical basis of our new chaos geometry and non-

linear analysis technique to studying chaotic features of di�erent nature systems,

in particular, with application to treating, analysing, modelling and forecast-

ing chaotic dynamics of environmental radioactivity systems. A usually, an ap-

proach combines together application of the advanced mltifractal formalism, ad-

vanced mutual information scheme, Grrasberger-Procachi algorythm, Lyapunov

exponent's analysis, method of precicted phase trajectories, memory functions

method , neural networks algorythms etc. In the next paper we will present the

results of the numerical analysis for array of values of radon �ux from the Earth's

surface, calculated from the experimental data of time series of radon �elds and

thus �rstly demonstrate a perspectives of using new chaos geomentry and non-

linear analysis technique in studying dynamical and topological characteristics

of chaotic dynamics in the environmental radioactivity systems.
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