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Abstract Work is devoted to the development of the theoretical foundations of

the universal new relativistic chaos-geometric and quantum-dynamic approach

that consistently includes a number of new relativistic quantum models and a

number of new or improved methods of analysis (correlation integral, fractal

analysis, algorithms, average mutual information, false nearest neighbors,

Lyapunov exponents, surrogate data, non-linear prediction, spectral methods,

etc.) to solve problems of complete modelling relativistic chaotic dynamics in an

electromagnetic �eld. For a number of atomic systems there are �rstly discovered

availability of a relativistic quantum chaos and obtained the corresponding

quantitative data on the chaos characteristics.
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Introduction

At present time one of the extremely important and too complex areas of

elements, systems theory is study of regular and chaotic dynamics of nonlin-

ear processes in the di�erent classes of quantum, quantum-generating systems

(atomicr systems in an external electromagnetic �eld) [1-14].
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It is worth to remind that dynamics of the cited systems in external electro-

magnetic �eld has features of the random, stochastic kind and its realization does

not require the speci�c conditions. The importance of mathematical studying a

phenomenon of stochasticity or quantum chaos in dynamical systems is provided

by a whole number of technical applications, including a necessity of understand-

ing chaotic features in a work of di�erent electronic devices and systems. New

�eld of investigations of the quantum and other systems has been provided by

a great progress in a development of a chaos theory methods. In previous our

papers [2-4] we have given a review of new methods and algorithms to analysis

of di�erent dynamical systems. In this paper we present the theoretical foun-

dations of the new universal relativistic chaos-geometric and quantum-dynamic

approach to modelling chaotic dynamics of heavy complex relativistic quantum

systems in an external electromagnetic �eld, opening a new �eld of relativistic

quantum chaos in geometry of a chaos. Chaos-geometric block includes a set of

new or partially improved non-linear analysis methods (such as correlation (di-

mension D) integral, fractal analysis, average mutual information, false nearest

neighbours, Lyapunov exponents (LE) and Kolmogorov entropy (KE) , power

spectrum analysis, the surrogate data, nonlinear prediction, predicted trajecto-

ries, neural network methods etc), quantum-dynamical block � new relativistic

approach to systems in a �eld. For a number of heavy systems there are �rstly

theoretically discovered availability of a relativistic quantum chaos and obtained

the corresponding quantitative data on the chaos characteristics.

2. Chaos-geometric approach to treating a chaos dynamics

As our approach has been presented earlier [1-3], here we are limited only by

the key moments. Let us formally consider scalar measurements s(n) = s(t0 +

n∆t) = s(n), where t0 is the start time, ∆t is the time step, and is n the number

of the measurements. Further it is necessary to reconstruct phase space using as

well as possible information contained in the s(n). Such a reconstruction results

in a certain set of d-dimensional vectors y(n) replacing the scalar measurements.

Packard et al. [9] introduced the method of using time-delay coordinates to

reconstruct the phase space of an observed dynamical system. The direct use of

the lagged variables s(n + τ), where τ is some integer to be determined, results

in a coordinate system in which the structure of orbits in phase space can be

captured.
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Figure 1. Chaos and neural network-geometric approach to nonlinear analysis

and forecast chaotic dynamics processes in complex systems (devices). Then

using a collection of time lags to create a vector in d dimensions,

y(n) = [s(n), s(n + τ), s(n + 2τ), . . . , s(n + (d− 1)τ)], (1)

the required coordinates are provided. In a nonlinear system, the s(n+jτ) are

some unknown nonlinear combination of the actual physical variables that com-

prise the source of the measurements. The dimension d is called the embedding

dimension, dE .

According to Mane and Takens [12], any time lag will be acceptable is not

terribly useful for extracting physics from data. If τ is chosen too small, then the

coordinates s(n+ jτ) and s(n+ (j+ 1)τ) are so close to each other in numerical

value that they cannot be distinguished from each other. Similarly, if τ is too

large, then s(n+jτ) and s(n+(j+1)τ) are completely independent of each other

in a statistical sense. Also, if τ is too small or too large, then the correlation

dimension of attractor can be under- or overestimated respectively [3]. It is

therefore necessary to choose some intermediate (and more appropriate) position

between above cases. First approach is to compute the linear autocorrelation

function

CL(δ) =
1
N

∑N
m=1[s(m+ δ)− s̄][s(m)− s̄]

1
N

∑N
m=1[s(m)− s̄]2

, (2)

where s̄ = 1
N

∑N
m=1 s(m) and to look for that time lag where CLδ �rst passes

through zero. This gives a good hint of choice for τ at that s(n + jτ) and
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s(n + (j + 1)τ) are linearly independent. However, a linear independence of two

variables does not mean that these variables are nonlinearly independent since

a nonlinear relationship can di�ers from linear one. It is therefore preferably

to utilize approach with a nonlinear concept of independence, e.g. the average

mutual information. Brie�y, the concept of mutual information can be described

as follows. Let there are two systems, A and B, with measurements ai and bk.

The amount one learns in bits about a measurement of ai from measurement of

bk is given by arguments of information theory [3,7]

IAB(ai, bk) = log2

(
PAB(ai, bk)

PA(ai)PB(bk)

)
, (3)

where the probability of observing a out of the set of all A is PA(ai), and the

probability of �nding b in a measurement B is PB(bi), and the joint probability

of the measurement of a and b is PAB(ai,bk). The mutual information I of two

measurements ai and bk is symmetric and non-negative, and equals to zero if only

the systems are independent. The average mutual information between any value

ai from system A and bk from B is the average over all possible measurements

of IAB(ai, bk),

IAB(τ) =
∑
ai,bk

PAB(ai, bk)IAB(ai, bk) (4)

To place this de�nition to a context of observations from a certain physical

system, let us think of the sets of measurements s(n) as the A and of the mea-

surements a time lag τ later, s(n+ τ), as B set. The average mutual information

between observations at n and n + τ is then

IAB(τ) =
∑
ai,bk

PAB(ai, bk)IAB(ai, bk) (5)

Now we have to decide what property of I(τ) we should select, in order to

establish which among the various values of τ we should use in making the data

vectors y(n). One could remind that the autocorrelation function and average

mutual information can be considered as analogues of the linear redundancy and

general redundancy, respectively, which was applied in the test for nonlinearity.

The general redundancies detect all dependences in the time series, while the

linear redundancies are sensitive only to linear structures. Further, a possible

nonlinear nature of process resulting in the vibrations amplitude level variations

can be concluded.

The goal of the embedding dimension determination is to reconstruct a Eu-

clidean space Rd large enough so that the set of points dA can be unfolded

without ambiguity. In accordance with the embedding theorem, the embedding
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dimension, dE , must be greater, or at least equal, than a dimension of attrac-

tor, dA, i.e. dE > dA. However, two problems arise with working in dimensions

larger than really required by the data and time-delay embedding [1,7,13,19].

First, many of computations for extracting interesting properties from the data

require searches and other operations in Rd whose computational cost rises ex-

ponentially with d. Second, but more signi�cant from the physical point of view,

in the presence of noise or other high dimensional contamination of the observa-

tions, the extra dimensions are not populated by dynamics, already captured by

a smaller dimension, but entirely by the contaminating signal. In too large an

embedding space one is unnecessarily spending time working around aspects of

a bad representation of the observations which are solely �lled with noise. It is

therefore necessary to determine the dimension dA. There are several standard

approaches to reconstruct the attractor dimension (see, e.g., [3,7-12]), but let us

consider in this study two methods only. The correlation integral analysis is one

of the widely used techniques to investigate the signatures of chaos in a time

series. The analysis uses the correlation integral, C(r), to distinguish between

chaotic and stochastic systems. To compute the correlation integral, the algo-

rithm of Grassberger and Procaccia [10] is the most commonly used approach.

According to this algorithm, the correlation integral is

C(r) = lim
N→∞

2

N(n− 1)

∑
i, j

(1 ≤ i < j ≤ N)

H (r − ||yi − yj ||) (6)

whereH is the Heaviside step function withH(u) = 1 for u > 0 andH(u) = 0

for u ≤, r is the radius of sphere centered on yi or yj , and N is the number of

data measurements. If the time series is characterized by an attractor, then the

integral C(r) is related to the radius r given by

d = lim

r → 0

N →∞

logC(r)

log r
, (7)

where d is correlation exponent. The method of surrogate data [3,7-11] is

an approach that makes use of the substitute data generated in accordance to

the probabilistic structure underlying the original data. This means that the

surrogate data possess some of the properties, such as the mean, the standard

deviation, the cumulative distribution function, the power spectrum, etc., but
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are otherwise postulated as random, generated according to a speci�c null hy-

pothesis. Here, the null hypothesis consists of a candidate linear process, and

the goal is to reject the hypothesis that the original data have come from a

linear stochastic process. One reasonable statistics is obtained as follows. If we

denote Qorig as the statistic computed for the original time series and Qsi for

ith surrogate series generated under the null hypothesis and let µs and σs de-

note, respectively, the mean and standard deviation of the distribution of Qs,

then the measure of signi�cance S is given by S =
|Qorig−µs|

σs
. An S value of

∼ 2 cannot be considered very signi�cant, whereas an S value of ∼10 is highly

signi�cant. To detect nonlinearity in the amplitude level data, the one hundred

realizations of surrogate data sets were generated according to a null hypothesis

in accordance to the probabilistic structure underlying the original data. Often,

a signi�cant di�erence in the estimates of the correlation exponents, between the

original and surrogate data sets, can be observed. In the case of the original data,

a saturation of the correlation exponent is observed after a certain embedding

dimension value (i.e., 6), whereas the correlation exponents computed for the

surrogate data sets continue increasing with the increasing embedding dimen-

sion. The high signi�cance values of the statistic indicate that the null hypothesis

(the data arise from a linear stochastic process) can be rejected and hence the

original data might have come from a nonlinear process. It is worth consider

another method for determining dE that comes from asking the basic question

addressed in the embedding theorem: when has one eliminated false crossing of

the orbit with itself which arose by virtue of having projected the attractor into

a too low dimensional space? By examining this question in dimension one, then

dimension two, etc. until there are no incorrect or false neighbours remaining,

one should be able to establish, from geometrical consideration alone, a value

for the necessary embedding dimension. Advanced version is presented in Ref.

[3]

The LE are the dynamical invariants of the nonlinear system. In a general

case, the orbits of chaotic attractors are unpredictable, but there is the limited

predictability of chaotic physical system, which is de�ned by the global and lo-

cal LE. A negative exponent indicates a local average rate of contraction while

a positive value indicates a local average rate of expansion. In the chaos the-

ory, the spectrum of LE is considered a measure of the e�ect of perturbing the

initial conditions of a dynamical system. In fact, if one manages to derive the

whole spectrum of the LE, other invariants of the system, i.e. KE and attractor's

dimension can be found. The KE, K, measures the average rate at which infor-
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mation about the state is lost with time. An estimate of this measure is the sum

of the positive LE. The inverse of the KE is equal to an average predictability.

Estimate of dimension of the attractor is provided by the Kaplan and Yorke

conjecture:

dL = j +

∑j
α=1 λα
|λj+1|

, (8)

where j is such that
∑j
α=1 λα > 0 and

∑j+1
α=1 λα < 0, and the LE λα are

taken in descending order. There are a few approaches to computing the LE.

One of them computes the whole spectrum and is based on the Jacobi matrix

of system [3]. In the case where only observations are given and the system

function is unknown, the matrix has to be estimated from the data. To calculate

the spectrum of the LE from the amplitude level data, one could determine the

time delay τ and embed the data in the four-dimensional space. In this point

it is very important to determine the Kaplan-Yorke dimension and compare it

with the correlation dimension, de�ned by the Grassberger-Procaccia algorithm.

The estimations of the KE and average predictability can further show a limit,

up to which the amplitude level data can be on average predicted.

3. Relativistic quantum chaos in atomic dynamics in a DC electric

and electromagnetic �elds

Further we present a new relativistic quantum approach to modeling the

chaotic dynamics of atomic systems in a dc electric and ac electromagnetic �elds,

based on the theory of quasi-stationary quasienergy states, optimized operator

perturbation theory, method of model-potential, a complex rotation coordinates

algorithm method. The universal chaos-geometric block will be used further to

treat the chaotic ionization characteristics for a number of heavy atomic systems.

Let us remind that in the case of the electromagnetic �eld atomic Hamiltonian

is usually as follows:

H =
1

2
p2 + Vat(r) + zF0 cos(ωt) (9)

The �eld is periodic, of course one should use the Floquet theorem; then the

eigen Floquet states ΨEj
(r, t) > and quasienergies Ej are de�ned as the eigen

functions and eigen values of the Floquet Hamiltonian HF = H − i∂t. In the

general form with using the method of complex coordinates the problem reduces

to the solution of stationary SchrÑ†dinger equation, which is as follows in the

model potential approximation:

(−1/2 · ∇2 + Vat(r) + ωLz + Foz)ΨE(r) = EΨE(r) (10)
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i.e. to the stationary eigen value and eigen vectors task for some matrix A

(with the consideration of several Floquet zones): (A − −EjB)Ej >= 0. As a

decomposition basis, system of the Sturm functions of the operator perturbation

theory basis is used.

In our new theory we start from the Dirac Hamiltonian (in relativistic units):

H = αp+ β − αZ/ri +
√
αFz, (11)

Here a �eld strength intensity is expressed in the relativistic units (Frel =

α5/2Fat.un.;α is the �ne structure constant). One could see that a relativistic

wave function in the Hilbert space is a bi-spinor. Using the formal transformation

of co-ordinates r → r exp(iθ) in the Hamiltonian

(??), one could get:

H(θ) = (αcp− Z/r) exp(−iθ) + β −
√
αFz exp(iθ), (12)

In comparison with an analogous non-relativistic theory, here there is arisen

a technical problem. In formulae (11) there is term β, which can not be simply

transformed. One of the solving receptions os a limitation of a sub-space of the

Hamiltonian eigen-functions by states of the de�nite symmetry (momentum J

and parity Ð ). Thus states can be described by the following functions:

ΨMPJ = 1/r

(
f(r)ΥMlJ (n, σ)

g(r)ΥMl′J(n, σ)

)
(13)

Here l(l′) and spin Ð. . . in the coupling scheme give a state with the total

momentum J and its projection MJ = M . Action of the Hamiltonian (11) on

the functions (13) with de�nite J results in:

_

H (θ)ΨMPJ = αr(
_
p r − iω(J+1/2)

r β) exp(−iθ)ΨMPJ+

+(β − αZ
r exp(−iθ)−

√
αFz exp(−iθ))ΨMPJ

(14)

where αr =

(
0....σn

σn...0

)
, β =

(
1....0

0..− 1

)
, pr = −i(1/r)(d/dr)r, n = r/r, σ -

the Pauli matrices; parameter ω =− 1, if l = J − 1/2 and ω = 1, if l = J + 1/2.

To further diahonalizuvaty Hamiltonian selecting the correct basis functions

in subspace, including selecting the following functions (sleterovskoho vodnye-

podibnoho or type):

Ψa,MPJ = 1/r

(
F (r)ΥMlJ (n, σ)

0

)
(15a)
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Ψ b,MPJ = 1/r

(
0

iG(r)ΥMl′J(n, σ)

)
(15b)

It is easy to see that the matrix elements (14) will be no-zeroth only between

the states with the same MJ . In fact this moment is a single limitation of the

whole approach.

Transformation of co-ordinates in the Pauli Hamiltonian (in comparison with

the Schrodinger equation Hamiltonian it contents additional potential term of

a magnetic dipole in an external �eld) can be performed by the analogous way.

However, procedure in this case is signi�cantly simpli�ed.

As illustration, below we present some results of our numerical modelling

ionization dynamics for Rydberg atoms Rb, Cs, Fr (Rb: n = 50−80;Cs, Fr : n =

60−80) in a microwave �eld (F = (1.2−3.2).10−9a.u.;ω/2π = 8.87, 36HGz). In

particular, in Table 1 we present our new relativistic theory data on dependence

of the Rb ionization probability Ð upon the F, interaction time �atom-�eld�.

For comparison there are listed the non-relativistic theoretical data by Krug-

Buchleitner [15]; Th2 � Glushkov,Prepelitsa etal [3].

Table 1. Dependence of ionization probability P for Rb (l0 = 0,m0 =

0, n0 = 60−66) on n0, F (at.units), (other parameters: t = 327.2π/ω; frequency

ωc = ω/2π = 36GHz, 8.87GHz): Th1- numerical simulation of the SchrÑ†dinger
equation by Krug-Buchleitner [15]; Th2 � Glushkov,Prepelitsa etal [3]; Th3 � this

work
Th.1 Th.2 Th.3 Th.1 Th.2 Th.2

n0 F =

3.1 ·
10−9

ωc = 36

F =

3.1 ·
10−9

ωc = 36

F =

3.1 ·
10−9

ωc = 36

F =

2.8 ·
10−9

ωc =

8.87

F = 3.1 ·
10−9

ωc = 8.87

F = 3.1 ·
10−9

ωc = 8.87

60 0,25 0,252 0,27 0,20 0,21 0,24

63 0,36 0,358 0,38 0,30 0,31 0,33

64∗ - - 0,36 - - 0,31

65 0,34 0,347 0,37 0,28 0,29 0,32

66 0,36 0,371 0,39 0,34 0,35 0,38

Comparison of theoretical results with experimental data by Munich group

for Rb: (n0 > 60, F = (1.2 − 3.2).10−9 a.u., ω/2π = 8.87GHz) [15,16] shows

that all listed data are in a reasonable agreement with experiment, however, the

best accuracy is provided by relativistic theory. In table 2 we �rstly present new

data on dependence of the Fr ionization probability Ð upon the F, interaction
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time �atom-�eld� (the same parameters as in table 1). Unfortunately, here there

are no any alternative theoretical or experimental results.

Table 2. Dependence of ionization probability P for Fr ( l0 = 0,m0 = 0, n0 =

76− 80) on n0, F (the same parameters as in table 1): this work

this work this work this work this work

n0 F = 2.8 ·
10−9

ω/2π = 36

F = 3.1 ·
10−9

ω/2π = 36

F = 2.8 ·
10−9

8.87GHz

F = 3.1·10−9

8.87GHz

77 0,47 0,50 0,43 0,46

80 0,58 0,61 0,54 0,56

83∗ 0,56 0,60 0,51 0,53

86 0,67 0,69 0,62 0,66

In whole, our modeling relativistic dynamics of ionization Rb, Cs, Fr Rydberg

states in the microwave �eld for main quantum numbers n0(n0 ∼ n∗) there are

the local violations of probability smooth growth associated with the complex

Floquet spectrum, link between the quasi-stationary states and a continuum, the

growing in�uence of multiphoton resonances. The picture becomes by more com-

plicated due to the single-photon near-resonance transitions with quasi-random

detuning from resonance and quantum phase shift due to scattering Rydberg

electron on the atomic core. It is in agreement with alternative comments in

[3,15]. In conclusion we have used the chaos-geometric approach (ch. 2) to es-

timate parameters of relativistic chaotic dynamics for the Rydberg atoms Rb,

Cs, Fr in microwave �eld: correlation dimension, LE, KE. In Table 3 there are

listed the numerical LE values, Kolmogorov entropy Kentr , for three atomic

systems Positivity �rst two LE showers certainly evidence of chaotic dynamics

for studied systems in a microwave �eld.

Table 3. Numerical data for Hottvod-Melben parameter K, Lyapunov expo-

nents λi, Kolmogorov entropy Kentr (our data)

Regim Ð§ λ1 λ2 Kentr

Chaos (Rb) 0.85 0.21 0.06 0.27

Chaos (Cs) 0.87 0.22 0.09 0.31

Chaos (Fr) 0.89 0.25 0.11 0.36

We have constructed the quantitative diagram of e�ects of the quantum

�uctuations, stabilization, destabilization, delocalization and performance of the

Kolmogorov-Arnold-Mozer theorem in relativistic atomic dynamics. We have

found that the regime of the chaotic ionization for the Li, Rb in a microwave �eld

at ωo = ωn3o > 0.29(Rb), 0.25(Cs), 0.16(Fr) switches to dynamic stabilization

one. In whole using the new relativistic chaos-geometric and quantum-dynamical
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approaches there have been results, which con�rm an universality and charm of

relativistic chaotic phenomena.
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