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Abstract. For the first time, we present a completely 
new technique of analysis, processing and forecasting 
of any time series of the environmental radioactivity 
dynamics, which schematically is as follows:  
a) general qualitative analysis of a dynamical problem, 
typical environmental radioactivity dynamics (including 
a qualitative analysis from the viewpoint of ordinary 
differential equations, the “Arnold-analysis”);  
b) checking for the presence of chaotic (stochastic) 
features and regimes (the Gottwald-Melbourne’s test;  
the correlation dimension method); c) reducing the 
phase space (the choice of  time delay, the definition 
of the embedding space by the correlation dimension 
methods and false nearest neighbours algorithms);  
d) determination of the dynamic invariants of a 
chaotic system (computation of the global Lyapunov 
dimension λα; determination of the Kaplan-Yorke 
dimension dL and average limits of predictability 
Prmax on the basis of the advanced algorithms;  
e) a nonlinear prediction (forecasting) of any 
dynamical system evolution. The last block really 
includes new (in the theory of environmental 
radioactivity dynamics and environmental protection) 
methods and algorithms of nonlinear prediction such 
as methods of predicted trajectories, stochastic 
propagators and neural networks modeling, renorm-
analysis with blocks of polynomial approximations, 
wavelet-expansions etc.  

Key words: environmental radioactivity dynamics, 
the ecological state, time series of concentrations, 
pollutants, analysis and prediction methods of the 
theory of chaos. 
 
Introduction 

One of the most actual and important problems of 
applied ecology and environment protection is associated 
with correct quantitative description of environmental 
radioactivity dynamics [1, 2]. In general, one should 
note the following actual problems:  

• a long-term investigation of radionuclides 
behaviour in the environment;  

• elucidation of the mechanism of radionuclides 
transfer in the environment by animals, through the food 
chain;  

• elucidation of the mechanism of transformation 
and transportation of radioactive substances due to 
meteorological phenomena and other factors; 

•  provision of a think-tank functioning for the 
recovery of the environment; 

•  conservation of research materials and samples 
and archiving of research methodologies and research 
objects. 

Key objectives of the atmospheric radionuclide 
dynamics include the research of radionuclides 
transportation in the atmospheric environment, the 
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dynamics of terrestrial radionuclides – research of 
radionuclides transfer and migration in the terrestrial 
environment, marine radionuclides dynamics – 
research of radionuclides transfer in the marine 
environment and radiation hydrology – research of 
radionuclides transfer from land by fresh water 
environments due to hydrological phenomena. Key 
radio-ecological transfers and effects include research 
cycles of radionuclides in forest ecosystems, the 
research of radionuclide transfer to biota in inland 
waters, the research of radionuclides transfer in soil-
plant system, the research of biological effects of 
irradiation in microbes, algae, and plants, and 
biological effects of animals’ radiation exposure, with 
an emphasis on free-range animals.  

The main purposes of modeling, measurements 
and forecasting approach are: to evaluate and predict 
the transfer of radionuclides and radiation in the 
environment using computer simulations and other 
methods, to design improved technologies for 
monitoring and measuring radiation, to develop 
mechatronical systems and remote control 
technologies that will enable sampling and other 
operations in the areas out of humans reach. It is 
important to make analysis, to archive the research 
outputs and samples, obtained from IER and other 
institutes around the world and provide these 
materials to researchers around the world upon their 
request.  

The problem of studying the dynamics of chaotic 
dynamical systems arises in many areas of science 
and technology. We are talking about classes of 
problems of identifying and estimating the parameters 
of interaction between the sources of complex 
(chaotic) oscillations of the time series of 
experimentally observed values. Such problems arise 
in environmental sciences, such as geophysics, 
chemistry, biology, medicine, neuroscience, 
engineering, etc. [1–10]. The problem of analysis and 
forecasting of the impact of anthropogenic pressure 
on the state of atmosphere in an industrial city and 
development of consistent, adequate schemes for 
modeling the properties of concentration fields of air 
pollutions has been considered in details, for 
example, in Ref. [3].  

In modern theory of the hydro-ecological 
systems, water resources and environmental 
protection, the problem of quantitative treating of 
pollution dynamics is also one of the most important 
and fundamental problems, in particular, for applied 
ecology and urban ecology [1–18]. Let us remind 
[1–3] that most of the models are currently used to 

assess (as well as forecast) the state of the 
environment pollution by the deterministic models 
or their simplification, based on simple statistical 
regressions. The success of these models, however, 
is limited by their inability to describe the nonlinear 
characteristics of the pollutant concentration 
behaviour and lack of understanding of the involved 
physical and chemical processes. Especially serious 
problem occurred during the study of dynamics  
of the hydro-ecological systems. Though the use  
of chaos theory methods establishes certain 
fundamental limitation on the long-term predictions, 
however, as it has been shown in a series of our 
papers [2–11]), these methods can be successfully 
applied to a short-or medium-term forecasting. In 
Ref. [2–4] we presented successful examples of 
quantitatively correct description of temporary 
changes in the concentration of nitrogen dioxide 
(NO2) and sulfur dioxide (SO2) in several industrial 
cities (Odessa, Trieste, Aleppo and the cities of 
Gdansk region) with a discovery of low-dimensional 
chaos. Moreover, some elements of this technique 
have been successfully applied to several prediction 
tasks for the other environmental management 
system. Here we mean the prediction of the 
evolution ecological state (temporal or even spatial) 
[6–11]. As example, let us remind the research 
results of variations dynamics of hydro-ecological 
systems (nitrates and sulphates concentrations in the 
Small Carpathians rivers watersheds in Eastern 
Slovakia) in the definite region by using non-linear 
prediction approaches and the recurrence plots 
method. At first, we discovered chaotic behaviour of 
nitrates and sulphates in the concentration of time 
series in the watersheds of the Small Carpathians. 
Naturally, except different physical and chemical 
features, from the formal mathematical point  
of view, difference between atmospheric and 
hydrological environmental systems is not essential, 
because in both problems, we deal with time series 
of fundamental pollution characteristics and 
therefore we should develop the technique  
for studying pollution dynamics of the hydro-
ecological system, which will only have some 
differences in the details.  

The main purpose of this paper is formally  
to represent theoretical basis of new general 
formalism for the analysis and forecasting of the 
environmental radioactivity dynamics and develop a 
new compact general scheme for modeling of 
temporal fluctuations of the pollution of temporal 
fluctuations field concentrations, based on the 
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methods of chaos theory. Earlier it had been 
successfully realized in case of the atmosphere (air 
basin) of large industrial cities and some hydro-
ecological systems (regions). Therefore, further we 
will consider the corresponding atmospheric 
formalism [2–4] and give the necessary comments in 
the case of important features of the environmental 
radioactivity dynamics. 
 
New general formalism for analysis and 
forecasting of the dynamics of hydroecological 
systems pollutants  

As usual, we start with the first key task on testing 
chaos in the time series of environmental radioactivity 
dynamics. Following to [2–4], one should consider 
scalar measurements of the system dynamical 
parameters, for instance: 

   (n)=s(t0+ n∆t) =s( n),                     (1) 
where t0 is a start time, ∆t – s time step, and n – a 
number of  measurements. In a general case, s(n) is 
any time series (e.g. pollutants concentration in the 
atmosphere). As processes resulting in chaotic 
behaviour are fundamentally multivariate, one needs 
to reconstruct phase space using the information 
contained in s(n).  

Such reconstruction results in a set of d-dimensional 
vectors y(n) for each scalar measurement. The main idea 
is the direct use of variable lags s(n+τ), where τ is some 
integer to be defined, which determines the coordinate 
system where a structure of orbits in phase space can be 
restored by using a set of time lags to create a vector in d 
dimension,  

y(n)=[s(n),s(n + τ),s(n + 2τ),..,s(n +(d−1)τ)],     (2) 
the required coordinates are provided. In a nonlinear 
system, s(n + jτ) there are some unknown nonlinear 
combinations of the actual physical variables. The space 
dimension d is the embedding dimension dE. 

The choice of a proper time lag is important for 
the subsequent reconstruction of phase space. If  τ is 

too small, then the coordinates s(n + jτ),  

s(n +(j +1)τ)  are so close to each other in numerical 

value that they cannot be distinguished from each 
other. If τ is too large, then s(n+jτ),  s(n+(j+1)τ) are 
completely independent of each other in a statistical 
sense. If τ is too small or too large, then the 
correlation dimension of attractor can be under-or 
overestimated. Further, it is an important task to 
choose some intermediate position between the 
above cases. The first approach is to compute the 

linear autocorrelation function CL(δ) and look for 
the time lag where CL(δ)is the fastest when passing 
through 0. This gives a good hint of choice for τ at 

which s(n+jτ) and s(n+(j +1)τ) are linearly 

independent. It is better to use the approach of 
nonlinear concept of independence, e.g. of average 
mutual information [1–3]. The average mutual 
information I of two measurements ai and bk is 
symmetric and non-negative, and equals to 0 if only 
the systems are independent. The average mutual 
information between any values ai from system A 
and bk from B is averaged over all possible 
measurements of IAB(ai, bk). In Refs. [2–4] it is 
suggested to choose such value of τ where the first 
minimum of I(τ) occurs. 

The goal of the embedding dimension 
determination is to reconstruct Euclidean space Rd 
large enough so that the set of points dA can be 
unfolded without ambiguity. The embedding 
dimension, dE, must be greater, or at least equal to 
the dimension of attractor, dA, i.e. dE > dA. In other 
words, we can choose a fortiori large dimension dE, 
e.g. 10 or 15, since the previous analysis provides us 
prospects that the dynamics of our system is 
probably chaotic. The correlation integral analysis is 
one of the widely used techniques to investigate 
chaos in time series. The analysis uses the 
correlation integral, C(r), to distinguish between 
chaotic and stochastic systems. According to [2–4], 
one should calculate the correlation integral C(r).  If 
the time series is characterized by an attractor, the 
correlation integral C(r) is related to the radius r as  

0

log ( )lim
logr

N

C rd
r→

→∞

= ,  (3) 

where d is a correlation exponent. If the correlation 
exponent attains saturation with an increase in the 
embedding dimension, then the system is generally 
considered to exhibit chaotic dynamics. The saturation 
value of the correlation exponent is defined as the 
correlation dimension (d2) of the attractor (see details in 
Refs. [3, 4]. 

Another method for determining dE comes from 
asking the basic question addressed in the 
embedding theorem: when has one eliminated false 
crossing of the orbit with itself, which arose by 
virtue of having projected the attractor into a too 
low dimensional space? [2–4]. In other words, when 
points in dimension d are neighbours of one 
another? In examining this question first in 
dimension one, then in dimension two, etc. by far 
there are no incorrect or false neighbours remaining, 
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so one should be able to establish a value for the 
necessary embedding dimension from geometrical 
consideration alone. Such approach was described 
by Kennel et al. [16, 17]. In dimension d each vector 
y(k) has the nearest neighbour yNN(k) with nearness 
in the sense of some distance function. The 
Euclidean distance in dimension d between y(k) and 
yNN(k) is called Rd(k) [3] 

2 2 2

2

( ) [ ( ) ( )] [ ( ) ( )]

... [ ( ( 1)) ( ( 1))] .

NN NN
d

NN

R k s k s k s k s k

s k d s k d

= − + + − + +

+ + − − + −

τ τ

τ τ
   (4) 

Rd(k) is presumably small when one has a lot of data, 
and for the dataset with N measurements, this distance is 
of order 1/N1/d. In dimension d + 1 this nearest-
neighbour distance is changed due to the (d + 1)st 
coordinates s(k + dτ) and sNN(k + dτ) to 

2 2 2
1( ) ( ) [ ( ) ( )]NN

d dR k R k s k d s k d+ = + + − +τ τ .     (5) 
We can define some threshold size RT  to 

decide when  neighbours are false. Then if [3] 
| ( ) ( ) |

( )

NN

T
d

s k d s k d R
R k

+ − +
>

τ τ ,           (6) 

(the nearest neighbours at time point k are declared 
false). Kennel et al. [17] showed that for values in the 
range 10 ≤ RT ≤ 50 the number of false neighbours 
identified by this criterion is constant. In practice, the 
percentage of false nearest neighbours is determined for 
each dimension d. The value at which the percentage is 
almost equal to zero can be considered as the embedding 
dimension. 

The predictability can also be estimated by the 
Kolmogorov entropy, which is proportional to the 
sum of positive Lyapunov exponents. The spectrum 
of the Lyapunov exponents is one of dynamical 
invariants for non-linear system with chaotic 
behaviour. Local and global Lyapunov exponents 
quantify the limited predictability of chaos, which 
can be determined from measurements. The 
Lyapunov exponents are related to the eigenvalues 
of the linearized dynamics across the attractor. 
Negative values show stable behaviour while 
positive values show local unstable behaviour.  

For chaotic systems that are both stable and 
unstable, the Lyapunov exponents indicate the 
complexity of the dynamics. Large positive values 
determine some average prediction limit. Since the 
Lyapunov exponents are defined as asymptotic 
average rates, they do not depend on the initial 
conditions, i.e. the choice of trajectory, and they do 
comprise an invariant measure of the attractor. An 
estimate of this measure is a sum of positive 
Lyapunov exponents. The estimate of the attractor 

dimension is provided by the conjecture dL and the 
Lyapunov exponents are taken in descending order. 
The dimension dL gives values close to the 
dimension estimates discussed earlier and is 
preferable when estimating high dimensions. If one 
computes the whole spectrum of the Lyapunov 
exponents, other invariants of the system, such as 
the Kolmogorov entropy and the attractor dimension 
can be found. The Kolmogorov entropy measures the 
average rate at which information about the state is 
lost with time. An estimate of this measure is the 
sum of the positive Lyapunov exponents. The 
estimate of the attractor dimension is provided by 
the Kaplan and Yorke conjecture (see details in 
Refs. [2–4, 16, 18]): 

1

1| |

j

L
j

d j =

+
= +

∑ α
α

λ

λ
,                               (7) 

where j is such that 
1

0
j

=
>∑ α

α
λ  and 

1

1
0

j+

=
<∑ α

α
λ , and the 

Lyapunov exponents are taken in descending order. 
The dimension dL gives values close to the 
dimension estimates discussed earlier and is 
preferable when estimating high dimensions. To 
compute Lyapunov exponents, one should use linear 
fitted map method although maps with higher order 
polynomials can be used [18–23]. Another new 
approach was developed by Glushkov-Prepelitsa et 
al using the neural networks technique [25]. All 
calculations are performed with using “Geomath” and 
“Quantum Chaos” computational codes [3–11, 25–47]. 

 
Conclusions 

Summing up the above said and the results  
of the work done [1–3], it is useful to summarize 
 the key points into the system sequence for 
investigating chaos availability and wording the 
forecast (evolution) model for the environmental 
radioactivity dynamics. It should be noted that the 
overall difference between the modeling of 
environmental radioactivity dynamics and the 
radioactivity dynamics of usual chemical pollution 
of atmospheric and hydrological systems is not 
essential and is connected only with treating the 
dynamics of these systems from the viewpoint of the 
evolutionary theory of differential equations. The 
above methods are just a part of a large set of 
approaches (see our versions in [1–11]), which is used in 
the identification and analysis of chaotic regimes of the 
time series in the environmental radioactivity dynamics. 
Shortly speaking, the whole technique of analysis, 
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processing and forecasting of any time series of the 
radioactive pollutants in different geospheres will look 
as follows (see figure 1 below):  

 
I. Analytics and environmental radioactivity dynamics, or  “Arnold-analysis” 

II. Preliminary studying and conclusion regarding chaos availability 
 

1. Gottwald-Melbourne test: K → 1 – chaos 
⇓ 

2. Energy spectrum, statistics, power spectra, Wigner-Dyson 
distribution,…,  

III. Phase space geometry. Fractal   geometry 
 

3. A method of the time lag, Packard-Takens algorithm, 
advanced autocorrelation functions or average initial 
information algorithms 

                                                               ⇓ 
4. Determining of embedding dimension dE by the method 
of correlation dimension or false nearest neighbouring 
points algorithm 

                                                              ⇓  
5. Computing of multi-fractal spectra, wavelet-analysis 
  

IV. Forecasting of the process in the environmental radioactivity dynamics 
 

6. Computation of the global Lyapunov dimension λα; 
determination of the Kaplan-Yorke dimension 

dL and average limits of predictability Prmax (advanced 
algorithms) 

                                                             ⇓ 
7. Determining of the number of nearest neighboring points 
NN for the best forecast results (analysis of qualitative 
indicators),… 

                                                             ⇓  
8. New methods and algorithms of nonlinear prediction 

(methods of predicted trajectories, stochastic propagators 
and neural networks modeling with blocks of the 
polynominal approximations, wavelet-expansions …  

 
Fig. 1. General compact scheme for computation  

of the characteristics of the environment,  
radioactivity dynamics of time series  

and a non-linear analysis, modeling and prediction 
 

A) General qualitative analysis of dynamical 
problem of typical hydro-ecological systems (including 
qualitative analysis from the viewpoint of ordinary 
differential equations, the “Arnold-analysis”); 

B) Checking for the presence of chaotic (stochastic) 
features and regimes (the Gottwald-Melbourne test; the 
method of correlation dimension);  

C) Reducing of the phase space (choice of time 
delay, the definition of the embedding space by the 
methods of correlation dimension and false nearest 
neighbors algorithms);  

D) Determination of the dynamic invariants of a 
chaotic system (computation of the Lyapunov exponent 
λα; determination of the Kaplan-Yorke dimension dL and 
average limits of predictability Prmax on the basis of 
advanced algorithms;  

E) A non-linear prediction (forecasting) of 
dynamical evolution of the system. 

The last block includes new methods and 
algorithms of nonlinear prediction, such as methods 

of predicted trajectories, stochastic propagators and 
neural networks modeling, renorm-analysis with 
blocks of polynomial approximations, wavelet-
expansions [10, 11, 25]. Indeed, one should use a 
few algorithms at any step of studying. Naturally, if 
aggregate and dynamic topological invariants [1–11] 
are identical for two chosen systems, then evolutions 
of these systems are also subject to the same laws, 
including the same or analogous systems of 
differential equations. This fact is very useful 
especially while using such new methods and 
algorithms of nonlinear prediction as methods of 
predicted trajectories, stochastic propagators and 
neural modeling networks with blocks of the 
polynomial approximations, wavelet-expansions 
[1, 10, 11, 25]. 
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