УДК 504.4 : 54 Юрасов С.Н., к.т.н., Бевз-Бирон Е.А., асс. Одесский государственный экологический университет

МЕТОДИКА РАСЧЕТА РАСПРОСТРАНЕНИЯ ТЯЖЕЛОЙ ПРИМЕСИ В ВОЗДУШНОМ ПОТОКЕ

В статье предлагается методика распространения тяжелой примеси в воздушном потоке, полученная при решении дифференциального уравнения турбулентной диффузии методом конечных разностей. Методика позволяет исследовать распространение примесей от различных приземных источников. Приведены сопоставительные расчеты с ОНД-86 на примере некоторых источников загрязнения (реклаймеры) на современных перегрузочных комплексах навалочных и насыпных грузов, даны рекомендации.

Ключевые слова: математическая модель, турбулентная диффузия, тяжелая примесь, воздушный поток.

Введение. Оценка распространения примесей от различных источников является актуальной экологической задачей. Выполняется она на стадии проектирования объекта при разработке раздела ОВОС, являющегося составной частью проекта.

В последние годы для решения этой задачи в практике инженерных изысканий используется автоматизированная система ЭОЛ 2000, расчетные модули которой реализуют ОНД-86. Упомянутая система согласована Министерством экологии и природных ресурсов Украины письмом от 22.05.2003 г. за № 5185/18–10.

Нормативный документ ОНД–86 [1] построен таким образом, что при рассмотрении различных случаев выброса примесей в атмосферу (организованные и неорганизованные одиночные, линейные и площадные источники) используются зависимости, полученные путем аналитического решения упрощенного дифференциального уравнения турбулентной диффузии примеси от сосредоточенных организованных источников, с некоторыми дополнительными коэффициентами.

Основными характеристиками загрязнения от точечных источников являются: скорость ветра U_M на высоте флюгера (10 м), при которой наблюдается максимальное значение концентрации примеси в приземном двухметровом слое (эта скорость ветра называется опасной); значение упомянутой концентрации примеси C_M и расстояние X_M от источника выброса до этого максимального значения. Перечисленные характеристики используются при выполнении всех остальных необходимых расчетов.

Однако не все источники загрязнения атмосферы вписываются в схемы ОНД-86. К ним относятся различные перегружатели на современных портовых комплексах навалочных и насыпных грузов [2]. Во время работы этих агрегатов в атмосферу выбрасывается наибольшее количество пыли. При определении исходных данных по упомянутым агрегатам как неорганизованным источникам загрязнения возникает много неясных вопросов по поводу скорости, расхода, размеров выброса пыли и т.д. Кроме того, соотношение размеров многих источников (например реклаймеров) в вертикальной плоскости с их высотой не позволяет рассматривать их как точечные.

Для исследования распространения примеси от подобных источников построим трехмерную модель турбулентной диффузии тяжелой примеси и сопоставим расчеты основных параметров загрязнения (X_M , C_M и U_M) по ОНД-86 и по предлагаемой модели.

При решении дифференциального уравнения турбулентной диффузии примеси в воздушном потоке воспользуемся методом конечных разностей. Этот численный метод применяется для решения широкого круга задач, его теоретические основы разработаны давно и дополнительное обоснование правильности использования данного метода не требуется. Достаточно сказать, что при решении аналогичных задач в водной среде коллективы Государственного гидрологического института (ГГИ), ВНИИ ВОДГЕО, Таллиннского политехнического института (ТПИ) и УралНИИВХ при разработке своих упрощенных методов расчета разбавления сточных вод [3] наряду с аналитическим решением дифференциального уравнения турбулентной диффузии использовали аппроксимацию результатов моделирования по конечно разностной схеме (*детальным* методом). Более того ГГИ было рекомендовано выполнять данные исследования *детальными* методами и лишь в случаях, когда это встречает затруднение, например при срочных расчетах, использовать упрощенные методы [3].

В недавнем прошлом использование зависимостей, полученных методом конечных разностей, при математическом моделировании было затруднительным в связи с необходимостью составления и отладки сложных вычислительных программ, с выполнением очень большого количества расчетов и с выводом на печать большого количества информации при каждом вычислительном эксперименте. В настоящее же время программное обеспечение современных персональных компьютеров при наличии соответствующих методических рекомендаций делает эту задачу достаточно простой для любого исследователя, знакомого хотя бы с табличным редактором EXCEL, не говоря уже о более совершенных средствах.

Материалы и методы исследования. В соответствии с [4] уравнение установившейся турбулентной диффузии примеси в воздушном потоке можно записать в следующем виде

$$u \frac{\partial C}{\partial x} - w_g \frac{\partial C}{\partial z} = \frac{\partial}{\partial z} \frac{\partial C}{\partial z} + k_Y \frac{\partial^2 C}{\partial y^2}, \qquad (1)$$

где и - средняя скорость воздушного потока;

С - концентрация примеси в приземном слое;

 k_Z и k_Y - вертикальная и горизонтальная составляющие коэффициента турбулентного обмена;

w_g - скорость оседания примеси.

Уравнение (1) записано для системы координат, в которой ось *OX* направлена вдоль вектора скорости ветра, ось *OY* – поперек вектора и ось *OZ* – по вертикали вверх.

Расчетные формулы, вошедшие в ОНД-86, получены в результате интегрирования этого уравнения при условиях, согласно которым [4]:

источник примеси мощностью M сосредоточен при x = y = 0 на высоте Z;

скорость ветра изменяется с высотой по логарифмическому закону;

вертикальная составляющая коэффициента турбулентного обмена k_Z линейно увеличивается с Z до границы приземного слоя, выше приземного слоя k_Z сохраняет постоянное значение;

горизонтальная составляющая коэффициента турбулентного обмена k_Y пропорциональна скорости ветра.

Решим уравнение (1) методом конечных разностей. Для этого рассечем поток ветра вертикальными плоскостями YOZ, перпендикулярными оси OX, с шагом Δx . Нумерацию этих сечений обозначим индексом "k". Сечение с номером k = 0 проходит через источник примеси. Далее горизонтальными плоскостями XOY разобьем поток на слои с шагом Δz , нумерацию слоев обозначим индексом "n". И, наконец, вертикальными плоскостями XOZ, перпендикулярными оси OY, наметим струи с шагом Δy . Нумерация струй – m.

Таким образом задана пространственная расчетная сетка с сечениями (*k*), слоями (*n*) и струями (*m*).

В дальнейшем в пределах каждой ячейки расчетной сетки будем рассматривать средние значения концентрации примеси, а также коэффициентов горизонтального и вертикального турбулентного обмена.

Запишем уравнение (1) в форме конечных разностей

$$u \frac{\Delta C}{\Delta x} = \frac{\Delta}{\Delta z} \frac{\Delta C}{\Delta z} + \frac{\Delta^2 C}{\Delta y^2} + \frac{\Delta C}{\omega z}.$$
 (2)

Рассмотрим два сечения (рис. 1): одно на расстоянии $k\Delta x$ от источника примеси, другое – на $(k + 1) \Delta x$. Определим теперь все слагаемые в уравнении (2) используя обозначения на рисунке 1:

$$u_{n} \left(\frac{\Delta C}{\Delta x} \right) = \left(\frac{u_{n}}{\Delta x} \right) \left(\frac{C_{k+1,n,m} - C_{k,n,m}}{C_{k,n,m}} \right);$$
(3)
$$\frac{\Delta}{\Delta z} \frac{\Delta C}{\Delta z} = \frac{k_{Z} \left(\frac{\Delta C}{\Delta z} \right) \Big|_{(2)} - k_{Z} \left(\frac{\Delta C}{\Delta z} \right) \Big|_{(1)}}{\Delta z} =$$

$$= [0,5(k_{Z(n+1)} + k_{Zn})(C_{k,n+1,m} - C_{k,n,m})/\Delta z - 0,5(k_{Z(n-1)} + k_{Zn})(C_{k,n,m} - C_{k,n-1,m})/\Delta z]/\Delta z = = (k_{Zn} / \Delta z^{2}) [a^{*}_{n+1} (C_{k,n+1,m} - C_{k,n,m}) - a^{*}_{n-1} (C_{k,n,m} - C_{k,n-1,m})],$$
(4)

где $a_{n+1}^* = 0,5 (k_{Z(n+1)} + k_{Zn})/k_{Zn},$ $a_{n-1}^* = 0,5 (k_{Z(n-1)} + k_{Zn})/k_{Zn};$

$$w_g \left(\Delta C / \Delta z \right) = [w_g / (2\Delta z)] (C_{k,n+1,m} - C_{k,n-1,m}).$$
(6)

		$L = k \Delta x$					$L = (k+1)\Delta x$	
					_			
<i>n</i> +1		\bullet $C_{k,n+1,m}$		k_{Zn+1}	- (2)			
п	\bullet $C_{k,n,m-1}$	\bullet $C_{k,n,m}$	\bullet $C_{k,n,m+1}$	k _{Zn}	- (1)	п	\bullet $C_{k+1,n,m}$	
<i>n</i> –1		\bullet $C_{k,n-1,m}$		k _{Zn-1}	_ (-)			
	<i>m</i> -1	m	<i>m</i> +1		-		т	

Рис. 1 – Обозначение координат значений концентрации примеси в расчетной сетке.

Подставим выражения (3) – (6) в уравнение (2) и решим его для
$$C_{k+1,n,m}$$
:
 $(u_n/\Delta x) (C_{k+1,n,m} - C_{k,n,m}) = (k_{Zn}/\Delta z^2) [a_{n+1}^* (C_{k,n+1,m} - C_{k,n,m}) - a_{n-1}^* (C_{k,n,m} - C_{k,n-1,m})] + (k_{Yn}/\Delta y^2) (C_{k,n,m+1} + C_{k,n,m-1} - 2C_{k,n,m}) + [w_g/(2\Delta z)](C_{k,n+1,m} - C_{k,n-1,m});$
 $C_{k+1,n,m} - C_{k,n,m} = [k_{Zn}\Delta x/(u_n\Delta z^2)] [a_{n+1}^* (C_{k,n+1,m} - C_{k,n,m}) - a_{n-1}^* (C_{k,n,m} - C_{k,n-1,m})] + [k_{Yn}\Delta x/(u_n\Delta y^2)] (C_{k,n,m+1} + C_{k,n,m-1} - 2C_{k,n,m}) + [w_g\Delta x/(2u_n\Delta z)](C_{k,n+1,m} - C_{k,n-1,m});$
 $C_{k+1,n,m} = a_{n+1} (C_{k,n+1,m} - C_{k,n,m}) - a_{n-1} (C_{k,n,m} - C_{k,n-1,m})] + b_n (C_{k,n,m+1} + C_{k,n,m-1} - 2C_{k,n,m}) + f_n (C_{k,n+1,m} - C_{k,n-1,m}) + C_{k,n,m}.$

И окончательно запишем

$$C_{k+1,n,m} = (a_{n+1} + f_n) C_{k,n+1,m} + (a_{n-1} - f_n) C_{k,n-1,m} + b_n (C_{k,n,m+1} + C_{k,n,m-1}) + (1 - a_{n-1} - a_{n+1} - 2b_n) C_{k,n,m},$$
(7)

где	$a_{n+1} = (k_{Z(n+1)} + k_{Zn}) \Delta x / (2u_n \Delta z^2);$	(8)
	$a_{n-1} = (k_{Z(n-1)} + k_{Zn}) \Delta x / (2u_n \Delta z^2);$	(9)
	$b_n = k_{Yn} \Delta x / (u_n \Delta y^2);$	(10)
	$f_n = w_g \Delta x / (2u_n \Delta z).$	(11)

Найдем теперь решение уравнения (2) для слоя, прилегающего к поверхности земли (рис. 2), учитывая отсутствие турбулентного обмена на этой поверхности.

		$L = k\Delta x$					$L = (k+1)\Delta x$ $m-1 \qquad m \qquad m+1$ 2 $=1 \qquad \bullet \qquad C_{k+1,1,m}$					
	m-1	т	m+1		_	m-1	т	m+1				
2		$C_{k,2,m}$		<i>k</i> _{Z2}	(2)	2						
<i>n</i> =1	\bullet $C_{k,1,m-1}$	\bullet $C_{k,1,m}$	\bullet $C_{k,1,m+1}$	k_{Z1}	(1)	<i>n</i> =1	\bullet $C_{k+1,1,m}$					
	подстилающая поверхность											

Рис. 2 – Обозначения значений концентрации примеси в ячейках расчетной сетки у подстилающей поверхности.

Аналогично запишем слагаемые уравнения (2) используя рис. 2:

$$u_{1} \left(\Delta C / \Delta x \right) = \left(u_{1} / \Delta x \right) \left(C_{k+1,1,m} - C_{k,1,m} \right);$$

$$\frac{\Delta}{-k_{Z}} \frac{\Delta C}{-k_{Z}} = \frac{k_{Z} \left(\Delta C / \Delta z \right) \Big|_{(2)} - k_{Z} \left(\Delta C / \Delta z \right) \Big|_{(1)}}{\Delta z} =$$

$$(12)$$

$$= [0,5 (k_{Z2} + k_{Z1}) (C_{k,2,m} - C_{k,1,m})/\Delta z - 0]/\Delta z = (k_{Z1}/\Delta z^2) [a^*_{1+1} (C_{k,2,m} - C_{k,1,m})], \quad (13)$$

где $a^*_{1+1} = 0,5 (k_{Z2} + k_{Z1})/k_{Z1};$

$$k_{YI} \left(\Delta^2 C / \Delta y^2 \right) = \left(k_{YI} / \Delta y^2 \right) \left(C_{k,1,m+1} + C_{k,1,m-1} - 2C_{k,1,m} \right).$$
(14)

На последнем слагаемом уравнения (2) остановимся подробнее.

Через границу (2) оседающая примесь поступает в слой 1 с интенсивностью $w_{g}C_{(2)}$, а на границе (1) происходит ее удаление из слоя 1 с интенсивностью $w_{g}C_{(1)}$. Изменение количества вещества в слое 1 за счет оседания происходит с интенсивностью $w_g(C_{(2)} - C_{(1)})$. Выразим $C_{(2)}$ и $C_{(1)}$ через $C_{k,1,m}$

$$C_{(2)} - C_{(1)} = [C_{k,1,m} + (\Delta z/2) (\Delta C/\Delta z)|_{(2)}] - [C_{k,1,m} - (\Delta z/2) (\Delta C/\Delta z)|_{(1)}] = = [C_{k,1,m} + \Delta C/\Delta z)|_{(2)} \Delta z/2] - [C_{k,1,m} - 0] = (\Delta C/\Delta z)|_{(2)} (\Delta z/2).$$
(15)

С другой стороны разность можно представить как

$$C_{(2)} - C_{(1)} = (\varDelta C/\varDelta z) \, \varDelta z. \tag{16}$$

Таким образом, для слоя, примыкающего к земной поверхности, справедливо следующее:

$$(\Delta C/\Delta z) = 0.5(\Delta C/\Delta z) |_{(2)} = (C_{k,2,m} - C_{k,1,m}) / (2\Delta z).$$
(17)

Подставим теперь (12) – (14) и (17) в (2) и решим относительно $C_{k+1, 1, m}$:

$$u_{1}(C_{k+1, 1, m} - C_{k, 1, m}) / \Delta x = (k_{Z1} / \Delta z^{2}) a_{1+1}^{*}(C_{k, 2, m} - C_{k, 1, m}) + (k_{Y1} / \Delta y^{2})(C_{k, 1, m} + C_{k, 1, m-1} - 2C_{k, 1, m}) + [w_{g} / (2\Delta z)](C_{k, 2, m} - C_{k, 1, m});$$

$$C_{k+1, 1, m} - C_{k, 1, m} = [(k_{Z1} \Delta x) / (u_{1} \Delta z^{2})] a_{1+1}^{*}(C_{k, 2, m} - C_{k, 1, m}) + (k_{Z1} \Delta x) / (u_{1} \Delta z^{2})] a_{1+1}^{*}(C_{k, 2, m} - C_{k, 1, m}) + (k_{Z1} \Delta x) / (u_{1} \Delta z^{2})] a_{1+1}^{*}(C_{k, 2, m} - C_{k, 1, m}) + (k_{Z1} \Delta x) / (u_{1} \Delta z^{2})] a_{1+1}^{*}(C_{k, 2, m} - C_{k, 1, m}) + (k_{Z1} \Delta x) / (u_{1} \Delta z^{2})] a_{1+1}^{*}(C_{k, 2, m} - C_{k, 1, m}) + (k_{Z1} \Delta x) / (u_{1} \Delta z^{2})] a_{1+1}^{*}(C_{k, 2, m} - C_{k, 1, m}) + (k_{Z1} \Delta x) / (u_{1} \Delta z^{2})] a_{1+1}^{*}(C_{k, 2, m} - C_{k, 1, m}) + (k_{Z1} \Delta x) / (u_{1} \Delta z^{2})] a_{1+1}^{*}(C_{k, 2, m} - C_{k, 1, m}) + (k_{Z1} \Delta x) / (u_{1} \Delta z^{2})] a_{1+1}^{*}(C_{k, 2, m} - C_{k, 1, m}) + (k_{Z1} \Delta x) / (u_{1} \Delta z^{2}) + (k_{Z1} \Delta x) / (u_{1} \Delta x) + (k_{Z1} \Delta x) + (k_{Z1} \Delta x) / (u_{1} \Delta x) + (k_{Z1} \Delta x) + (k_{Z1} \Delta x) / (u_{1} \Delta x) + (k_{Z1} \Delta x) + (k_{Z1} \Delta x) / (u_{1} \Delta x) + (k_{Z1} \Delta x) + ($$

$$[(k_{Y1} \Delta x)/(u_1 \Delta y^2)] (C_{k,1,m} + C_{k,1,m-1} - 2C_{k,1,m}) + [(w_g \Delta x)/(2u_1 \Delta z)] (C_{k,2,m} - C_{k,1,m});$$

$$C_{k,2,m} - C_{k,1,m} = a_{1+1} (C_{k,2,m} - C_{k,1,m}) + b_1 (C_{k,1,m+1} + C_{k,1,m-1} - 2C_{k,1,m}) + f_1 (C_{k,2,m} - C_{k,1,m});$$

$$C_{k+1,1,m} = (a_{1+1} + f_1)C_{k,2,m} + b_1(C_{k,1,m+1} + C_{k,1,m-1}) + (1 - a_{1+1} - 2b_1 - f_1)C_{k,1,m},$$
(18)
$$c_{k+1,1,m} = (a_{1+1} + f_1)C_{k,2,m} + b_1(C_{k,1,m+1} + C_{k,1,m-1}) + (1 - a_{1+1} - 2b_1 - f_1)C_{k,1,m},$$
(18)

где

 $a_{1+1} = (k_{Z2} + k_{Z1}) \Delta x / (2u_1 \Delta z^2);$ $b_1 = k_{Y1} \Delta x / (u_1 \Delta y^2);$ $f_1 = w_g \, \varDelta x \, / \, (2u_1 \varDelta z).$ Уравнения (7) и (18) позволяют пошагово рассчитать распределение концентрации вещества в вертикальных сечениях, перпендикулярных осредненному вектору скорости ветра, на различном расстоянии от источника загрязнения.

Физический смысл уравнения (7) заключается в том, что в каждой струе следующего сечения (рис. 1) количество вещества формируется за счет его частичного переноса из струй предыдущего сечения, расположенных: выше расчетной струи (первое слагаемое); ниже (второе слагаемое); справа и слева (третье слагаемое); а также - из этой же расчетной струи (последнее слагаемое). Последнее слагаемое не будет отрицательным (иначе теряется физический смысл уравнения) при

$$(a_{n+1} + a_{n-1} + 2b_n) < 1.$$
⁽¹⁹⁾

Аналогично можно определиться и со значением параметра f_n . По второму слагаемому формулы (7) видно, что должно выполняться условие

$$f_n < a_{n-1}. \tag{20}$$

Зависимость, позволяющая контролировать правильность расчетов, будет иметь следующий вид [5]:

$$\sum_{n=1}^{N_C} M_C = M_0 \sum_{n=1}^{N_C} C_0 u_n - 2f_1 \sum_{i=0}^{k-1} u_n \sum_{i=1}^{M_C} C_{i,1,m},$$
(21)

N_C и *M_C* - количество слоев и струй в сечении расчетной сетки; где

- количество струй, занятых примесью в начальном сечении; m_0

- концентрация примеси в начальном сечении; C_0

- концентрация примеси в *i*-том сечении в приповерхностном слое (n=1) $C_{i,1,m}$ в струе *m*.

Левая часть условия (21) соответствует количеству примеси, которое пересекает k-тое сечение в единицу времени (сумма единичных расходов примеси в ячейках вертикального сечения). Первое слагаемое справа характеризует перенос вещества через начальное (k = 0) сечение, второе – потерю вещества от источника до k-того сечения за счет его оседания на подстилающую поверхность. Если примесь легкая (f_1 = 0), то количество вещества в сечениях должно быть постоянным, если тяжелая ($f_1 > 0$) – должно убывать после контакта примеси с подстилающей поверхностью.

Для выполнения расчета необходимы следующие исходные данные:

- скорость ветра на высоте 10 м, м/с; u_{10}
- высота источника над подстилающей поверхностью, м; H
- скорость ветра на высоте источника, м/с; u_H
- M- мощность выброса, г/с;
- диаметр источника (или его длина и ширина), м; D
- скорость выброса, м/с; ω_0
- расход газовоздушной смеси, м³/с V_1
- скорость оседания частиц, м/с; W_g
- коэффициент горизонтального турбулентного обмена, м²/с; k_{Yn}
- коэффициент вертикального турбулентного обмена, м²/с; k_{Zn}

*z*₀ - параметр шероховатости подстилающей поверхности, м.

Последовательность расчета.

1. Рассчитывается действующая (эквивалентная) площадь выброса в вертикальной плоскости

$$\Omega_{\mathcal{I}} = V_1 / u_H. \tag{22}$$

2. Определяются длина (*l*) и высота (*h*) выброса в вертикальной плоскости. Если они неизвестны, то $l = h = (\Omega_{\mathcal{I}})^{0.5}$.

3. Устанавливаются пространственные размеры расчетной сетки Δx , Δy и Δz : шаг Δz подбирается таким образом, чтобы он был кратным H и h; шаг Δy должен быть кратным l.

4. Определяются значения скорости ветра u_n , коэффициентов вертикального (k_{Zn}) и горизонтального (k_{Yn}) турбулентного обмена в различных слоях по высоте.

5. По формулам (8) – (11) рассчитываются параметры модели a_{n+1} , a_{n-1} , b_n и f_n для различных слоев. Для каждого слоя должны выполняться условия (19) и (20).

Если значения параметров a_{n+1} , a_{n-1} , b_n и f_n превышают установленные ограничения, необходимо либо уменьшить шаг Δx , либо увеличить толщину слоя Δz и (или) ширину струи Δy и рассчитать новые значения параметров.

6. В соответствующие клетки нулевого вертикального сечения расчетной сетки записываются значения концентрации примеси в выбросе и по формулам (7) и (18) рассчитываются значения концентрации примеси в первом сечении. Потом во втором и т.д. до необходимого расстояния.

7. Для каждого сечения должно выполняться условие (21).

Результаты исследований и их анализ.

В качестве примера рассмотрим работающий реклаймер на угольном комплексе (п. Южный). Исходные данные приняты по результатам изысканий Черноморнии-проекта (табл. 1). Следует отметить, что допущение $w_g=0$, сделанное Черноморниипро-ектом, вносит погрешность, т.к. угольную пыль следует отнести к тяжелым примесям.

Таблица 1 – Исходные данные для расчета (Черноморниипроект)

Примесь	ОБУВ, мг/м ³	A	<i>D</i> , м	Н, м	<i>М</i> , г/с	F	$V_{1}, {\rm m}^{3}/{\rm c}$	ω ₀ , м/с	<i>w</i> _g , м/с
Пыль угольного концентрата	0,11	200	10,0	6,0	0,525	1,0	118,0	1,5	0,0

В табл. 2 приведены результаты расчета основных параметров загрязнения по формулам ОНД-86 для холодного источника [4]:

$$C_M = AMFn\eta ND/(8V_1H^{4/3}), \tag{23}$$

где А - коэффициент, зависящий от температурной стратификации атмосферы;

F - коэффициент, учитывающий скорость оседания примеси;

n - коэффициент, учитывающий условия выхода газовоздушной смеси;

η - безразмерный коэффициент, учитывающий влияние рельефа местности;

N - количество одинаковых точечных источников.

 $V_1 = \pi D^2 \omega_0 / 4;$

$$X_M = (5 - F) / (4dH), \tag{24}$$

где *d* - безразмерный коэффициент;

$$U_M = 0,5,$$
 при $v'_M \le 0,5;$ (25)

$$U_M = v'_M$$
, при 0,5 < $v'_M \le 2,0$; (26)

$$U_M = 2.2v'_M$$
, при $v'_M > 2.0$, (27)

51

где v'_{M} - параметр, зависящий от скорости ветра, м/с.

В соответствии с [4] опасная скорость ветра U_M для мощных тепловых электростанций составляет 5 – 7 м/с, для металлургических предприятий – 2 – 4 м/с, для химического производства и линейных источников – 1 – 2 м/с. При осуществлении холодных выбросов расстояние X_M до приземной концентрации C_M составляет 5 – 10 высот труб.

Таблица 2 – Результаты расчета при погрузке угля по ОНД-86 при различной Н

Н, м	C_M , мг/м ³	<i>Х_М</i> , м	U_M , м/с
6	0,102	173	7,2
4	0,175	143	10,7

Таким образом, для рассматриваемого источника U_M должна находиться в интервале 1 – 2 м/с, а X_M – 30 – 60 м. В соответствии с расчетом по ОНД-86 (табл. 2) видно, что при высоте источника 6 м скорость U_M получена равной 7,2 м/с, а расстояние X_M – 173 м. Это явно противоречит [4]. При снижении источника до 4 м (табл. 2) значения U_M становится равным 11 м/с, а X_M уменьшаются до 140 м, что по прежнему значительно превосходит расстояние, указанное в [4]. Такое несоответствие значений двух основных параметров загрязнения ставит под сомнение значения и третьего основного параметра – C_M .

Представление реклаймера в виде N точечных источников с эквивалентным суммарным выбросом (табл. 3) существенно влияет на результат расчета. Значения U_M и X_M соответствуют [4] при $N \ge 10$, при этом C_M изменяется от 0,485 до 1,44 мг/м³.

N	<i>D</i> , м	<i>М</i> , г/с	<i>V</i> ₁ , м ³ /с	C_M , мг/м ³	<i>X_M</i> , м	U_M , м/с
1	10,0	0,525	117,8	0,102	173	7,15
2	7,07	0,263	58,90	0,144	146	5,06
10	3,16	0,0525	11,78	0,485	70,3	1,03
20	2,24	0,0263	5,890	0,850	49,7	0,73
50	1,41	0,0105	2,356	1,440	34,2	0,50
100	1,00	0,00525	1,178	1,440	34,2	0,50

Таблица 3 – Результаты расчета при погрузке угля по ОНД-86 при различном N

Моделирование распространения угольной пыли по предлагаемой модели выполнено при переменных по высоте [6]–[8] u, k_Y и k_Z :

$$u = u_{10} (\ln z/z_0) / (\ln 10/z_0);$$
(28)

$$k_Z = k_1 (z/z_1)^m; (29)$$

$$k_Y = k_0 u. \tag{30}$$

Принято: $z_0 = 0,1$; $z_1 = 10$; $m = k_1 = 1$; $k_{10} = 1,0$; $k_{25} = 2,0$; $k_0 = 0,3$.

Результаты моделирования приведены в табл. 4 и на рис. 3. Параметры источника приняты по табл. 1. В табл. 5 содержатся параметры модели при скорости ветра 7,2 м/с для тяжелой примеси ($w_g = 0,1$ м/с), Для легкой примеси ($w_g = 0$) параметры модели такие же кроме $f_n = 0$. В табл. 6 показан фрагмент распределения угольной пыли в начальном сечении, а в табл. 7 и 8 – на расстоянии 172 м (k=229; $\Delta x=0,75$ м; $w_g = 0$) и 122 м (k=163; $\Delta x=0,75$ м; $w_g = 0,1$ м/с) при той же скорости ветра.

Сумма единичных расходов в начальном сечении в соответствии с (21) равна: 4*(4,459*6,41+4,459*6,67+4,459*6,90+4,459*7,10)= 483,02965.

По табл. 4 видно, что для рассматриваемого источника уменьшение скорости ветра приводит к увеличению максимальной приземной концентрации. При u_{10} , равной 0,50 м/с, C_M составляет 2,45 мг/м³, что превышает норматив (ориентировочно безопасный уровень воздействия (ОБУВ) пыли угольного концентрата, равный

0,11 мг/м³) примерно в 22 раза. В то время как по ОНД-86 при опасной скорости ветра 7,2 м/с максимальная приземная концентрация составляет 0,9 ОБУВ.

Учет скорости оседания примеси существенно влияет на рассматриваемые характеристики (табл. 7 и 8): при $w_g = 0,1$ м/с и $u_{10} = 7,2$ м/с значение C_M составляет 0,300 мг/м³ (при $w_g = 0$ значение C_M гораздо меньше – 0,189 мг/м³), X_M – 122 м (192 м).

			0	()	. `
	INODAILIJA NACHNO	ACTIONALIA VE	ίαπι παι πι τημ	(14) = 0	۰1
1 a O M H a + - 1 C S Y M B I a I B M O A C M H	$\mu \nu \nu \sigma \sigma \sigma \mu \nu \sigma $			$W\sigma = 0$	·)
				\ <u>></u>	

<i>и</i> ₁₀ , м/с	10,0	7,0	5,0	3,0	2,0	1,5	1,0	0,5
Начальная конц. пыли, мг/м ³	4,459	4,459	4,459	4,459	4,459	4,459	4,459	4,459
Длина источника <i>l</i> , м	3,76	4,837	5,42	6,45	8,46	9,03	11,29	16,93
Высота источника h, м	3,60	4,00	5,00	7,00	8,00	10,00	12,00	16,00
Ширина струи Ду, м	1,25	1,21	1,08	1,07	1,06	1,00	1,03	1,06
Толщина слоя <i>Дz</i> , м	1,20	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Расст. между сечениями Дх, м	1,00	0,75	0,60	0,50	0,25	0,25	0,20	0,10
Кол. слоев от пов. до ист. <i>n_H</i>	5	6	6	6	6	6	6	6
Кол. слоев по высоте ист. n_0	3	4	5	7	8	10	12	16
Кол. струй по ширине ист. <i>m</i> ₀	3	4	5	6	8	9	11	16
C_M , MF/M ³	0,119	0,197	0,295	0,522	0,846	1,098	1,593	2,448
Х _м , м	233,0	167,2	127,8	88,0	64,3	54,0	42,6	31,6

Рис. 4 – Зависимость концентрации C_M в приповерхностном слое от скорости ветра

и	<i>Z</i> середины	Δz ,	u_n ,	$k = w^2/c$	$k = M^2/c$	<i>a</i> .	<i>a</i> .	Ь	f	$a_{n+1} + a_{n-1} + a_{n$
n	слоя, м	М	м/с	$\kappa_{Zn}, M/C$	$\kappa_{\gamma_n}, \mathbf{M} / \mathbf{C}$	u_{n+1}	u_{n-1}	D_n	Jn	$+2b_n$
				$w_g = 0,1 \text{ M/}$	с (при w _g	$=0, f_n = 0)$; $\Delta x = 0,75$	М		
1	0,50	1,00	1,69	0,05000	0,50592	0,04447	0,00000	0,16279	0,02224	0,37005
2	1,50	1,00	3,71	0,15000	1,11252	0,04045	0,02022	0,16279	0,01011	0,38625
3	2,50	1,00	4,65	0,25000	1,39457	0,04840	0,03227	0,16279	0,00807	0,40625
4	3,50	1,00	5,27	0,35000	1,58035	0,05695	0,04271	0,16279	0,00712	0,42524
5	4,50	1,00	5,73	0,45000	1,71911	0,06544	0,05235	0,16279	0,00654	0,44337
6	5,50	1,00	6,10	0,55000	1,82991	0,07377	0,06148	0,16279	0,00615	0,46083
7	6,50	1,00	6,41	0,65000	1,92215	0,08194	0,07023	0,16279	0,00585	0,47775
8	7,50	1,00	6,67	0,75000	2,00116	0,08995	0,07870	0,16279	0,00562	0,49423
9	8,50	1,00	6,90	0,85000	2,07027	0,09781	0,08695	0,16279	0,00543	0,51034
10	9,50	1,00	7,11	0,95000	2,13168	0,10467	0,09500	0,16279	0,00528	0,52525
11	10,50	1,00	7,29	1,03334	2,18694	0,10974	0,10203	0,16279	0,00514	0,53735
12	11,50	1,00	7,46	1,10001	2,23717	0,11398	0,10728	0,16279	0,00503	0,54684
13	12,50	1,00	7,61	1,16668	2,28321	0,11826	0,11169	0,16279	0,00493	0,55552

Таблица 5 – Фрагмент таблицы параметров модели при скорости ветра 7,2 м/с

n		$C_{0,n.m}$ (1	$w_g = 0$ ии	$w_g = 0,1$	$\mathbf{M/c}; \Delta x =$	0,75 м)	(правая ч	асть (21) составл	пяет 483	,02965)	
11	<i>m</i> =45	46	47	48	49	50	51	52	53	54	55	56
1		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	•••
2		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	•••
3		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	•••
4		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
5		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
6		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
7		0,000	0,000	0,000	4,459	4,459	4,459	4,459	0,000	0,000	0,000	
8		0,000	0,000	0,000	4,459	4,459	4,459	4,459	0,000	0,000	0,000	•••
9		0,000	0,000	0,000	4,459	4,459	4,459	4,459	0,000	0,000	0,000	•••
10		0,000	0,000	0,000	4,459	4,459	4,459	4,459	0,000	0,000	0,000	•••
11		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
												•••

Таблица 6 – Распределение угольной пыли в начальном сечении (*u*₁₀ = 7,2 м/с)

Таблица 7 – Распределение угольной пыли на расстоянии 172 м (u_{10} = 7,2 м/с)

n	$C_{229,n.m}$ ($w_g = 0$; $\Delta x = 0,75$ м) (левая часть (21) сотавляет 483,02965)											
11	<i>m</i> =45	46	47	48	49	50	51	52	53	54	55	56
1		0,165	0,174	0,182	0,186	0,189	0,189	0,186	0,182	0,174	0,165	
2		0,173	0,183	0,190	0,195	0,198	0,198	0,195	0,190	0,183	0,173	
3		0,183	0,193	0,201	0,207	0,209	0,209	0,207	0,201	0,193	0,183	
4		0,192	0,203	0,211	0,216	0,219	0,219	0,216	0,211	0,203	0,192	
5		0,198	0,209	0,217	0,223	0,226	0,226	0,223	0,217	0,209	0,198	
6		0,200	0,211	0,219	0,225	0,228	0,228	0,225	0,219	0,211	0,200	
7		0,198	0,209	0,218	0,223	0,226	0,226	0,223	0,218	0,209	0,198	
8		0,193	0,204	0,212	0,218	0,220	0,220	0,218	0,212	0,204	0,193	
9		0,185	0,195	0,203	0,208	0,211	0,211	0,208	0,203	0,195	0,185	
10		0,174	0,184	0,191	0,196	0,199	0,199	0,196	0,191	0,184	0,174	
11		0,162	0,171	0,178	0,182	0,185	0,185	0,182	0,178	0,171	0,162	
12		0,148	0,156	0,162	0,167	0,169	0,169	0,167	0,162	0,156	0,148	
13		0,133	0,141	0,146	0,150	0,152	0,152	0,150	0,146	0,141	0,133	

Таблица 8 – Распределение угольной пыли на расстоянии 122 м ($u_{10} = 7,2$ м/с)

	C_1	$1_{63,n.m}$ (w_g	= 0,1 м/с	$c; \Delta x = 0,$,75 м) (ле	евая част	ть (21) ра	вна 452,	94651, г	іравая —	452,9465	51)
п	<i>m</i> =45	46	47	48	49	50	51	52	53	54	55	56
1		0,250	0,269	0,284	0,295	0,300	0,300	0,295	0,284	0,269	0,250	
2		0,261	0,281	0,297	0,308	0,314	0,314	0,308	0,297	0,281	0,261	
3		0,272	0,293	0,309	0,321	0,327	0,327	0,321	0,309	0,293	0,272	
4		0,278	0,300	0,317	0,329	0,335	0,335	0,329	0,317	0,300	0,278	
5		0,278	0,299	0,316	0,328	0,334	0,334	0,328	0,316	0,299	0,278	
6		0,271	0,292	0,308	0,320	0,326	0,326	0,320	0,308	0,292	0,271	
7		0,258	0,277	0,293	0,304	0,309	0,309	0,304	0,293	0,277	0,258	
8		0,239	0,257	0,272	0,282	0,287	0,287	0,282	0,272	0,257	0,239	
9		0,218	0,234	0,247	0,257	0,261	0,261	0,257	0,247	0,234	0,218	
10		0,194	0,209	0,221	0,229	0,233	0,233	0,229	0,221	0,209	0,194	
11		0,170	0,183	0,193	0,200	0,204	0,204	0,200	0,193	0,183	0,170	
12		0,146	0,157	0,166	0,172	0,175	0,175	0,172	0,166	0,157	0,146	
13		0,122	0,132	0,139	0,144	0,147	0,147	0,144	0,139	0,132	0,122	

По ОНД-86 при $w_g/U_M \le 0,015$ параметр F=1. В нашем случае $w_g=0,1$ м/с и $U_M=7,2$ м/с, отсюда $w_g/U_M = 0,1/7,2=0,014$, тогда F=1 и C_M останется прежней – 0,102 мг/м³.

Выводы. 1. Для низких неорганизованных источников больших размеров типа реклаймеров и при малой скорости оседания частиц оценка распространения примеси

по ОНД-86 приводит к грубым ошибкам. Для таких условий необходимы детальные исследования.

В соответствии с ОНД-86 от реклаймера параметры загрязнения при $w_g=0$ равны: $U_M = 7,2$ м/с; $C_M = 0,102$ мг/м³; $X_M = 173$ м. При $w_g=0,1$ м/с результат остается прежним.

По предлагаемой методике при $u_{10} = 7,2$ м/с: $C_M = 0,189$ мг/м³; $X_M = 172$ м. Видно, что C_M в 1,9 раза больше, а X_M совпадает с расчетом по ОНД-86. При $w_g=0,1$ м/с расхождение увеличивается: $C_M = 0,300$ мг/м³; $X_M = 122$ м.

Более того, 7,2 м/с не является опасной скоростью ветра (табл. 4): при $w_g = 0$ и $u_{10} = 0,50$ м/с, $C_M = 2,45$ мг/м³ и $X_M = 32$ м.

2. Дальнейшие исследования необходимо вести в направлении: оптимизации параметров модели для легких и тяжелых примесей с различной скоростью оседания; получения зависимости для слоя, примыкающего к нижней границе приподнятой инверсии; разработки рекомендаций по приведению рассмотренных источников загрязнения (и подобных им) к схемам ОНД-86.

Список литературы

- 1. *ОНД-86*. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. Л., Гидрометеоиздат, 1987. 93 с.
- 2. Чикановский В.А. Защита атмосферного воздуха от пыли при обработке судов с навалочными и насыпными грузами: Монография. Одесса: Астропринт, 2003. 336 с.
- 3. *Методические основы* оценки и регламентирования антропогенного влияния на качество поверхностных вод: Монография под ред. засл. деят. науки и техн. РСФСР проф. Караушева А.В. Изд. 2-е. Л.: Гидрометеоиздат, 1987. 285 с.
- 4. Сонькин Л.Р. Синоптико-статистический и краткосрочный прогноз загрязнения атмосферы. Л.: Гидрометеоиздат, 1991. 223 с.
- 5. *Юрасов С.Н., Юрасова А.Ю.* Математическая модель установившейся турбулентной диффузии взвеси в водном потоке // Вісник Одеського державного екологічного університету. 2008. вип. 6. с. 165-169
- 6. Динамическая метеорология / Под ред. Д.Л. Лайхтмана. Л., Гидрометеоиздат, 1976. 607 с.
- 7. Полетаєва Л.М., Юрасов С.М., Ільїна В.Г. Моделювання та прогнозування стану довкілля: Конспект лекцій. Дніпропетровськ: "Економіка", 2005. 179 с.
- 8. *Тарнопольский А.Г.* Модель геофизического пограничного слоя и ее приложения к решению прикладных задач в различных географических зонах / Диссертация на соискание уч. ст. д.г.н. Одесса, 1994г. 377 с.

Методика розрахунку розповсюдження важкої домішки у повітряному потоці Юрасов С.М., Бевз-Бірон О.О.

У статті запропоновано методика розрахунку розповсюдження важкої домішки в повітряному потоці, яка отримана при рішенні диференційного рівняння турбулентної дифузії методом кінцевих різниць. методика дозволяє досліджувати розповсюдження домішок від джерел, які не підходять до схем ОНД-86. На прикладі деяких джерел забруднення (реклаймери) на сучасних перевантажних комплексах насипних вантажів, наведені розрахунки, дані рекомендації.

Ключові слова: математична модель, турбулентна дифузія, важка домішка, повітряний потік.

Calculation methodology of heavy infusion s spreading in the air stream Urasov S., Bevz-Biron E.

Calculation methodology of heavy infusion s spreading in the air stream, received upon decision of differential equation of turbulent diffusion by method of final differences is proposed in the article. Methodology allows to analyze infusion s spreading from different earthy springs. Compared calculations with CAND-86 on the example of some dirty springs (reclaimer) on modern transshipment complexes of piled and poured cargo are pointed and recommendations are given.

Keywords: mathematical model, turbulent diffusion, heavy infusion, air stream.