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Introducing Remarks 

 

Numerical (or calculational or computational) methods in quantum 

geometry and a chaos theory are central to modern computing mathematics and 

quantum physics and chemistry. It reflects new requirements that relate to 

modern mathematics and physics training.  

It is well known that the methods of applied mathematics? Quantum 

geometry and mechanics give a powerful and and efficient tool researchers in 

various fields of science and engineering for mathematical modeling of the most 

difficult tasks . Especially this fact applies to address a wide range of problems 

of modern applied mathematics and computational physics. Implementation of 

new mathematical models on the computer is using methods of applied 

mathematics, which, of course, constantly being improved with advances in 

computer technology.  

Construction of mathematical model of any problem, which is to ensure 

efficiency and optimality criterion, can be obtained quickly through an 

appropriate effective algorithm. Any reduction of problems of mathematical 

physics or engineering course often reduces to the solution of algebraic 

equations with one or other structure. As a result, most of the methods applied 

mathematics related to reducing the problem to a system of algebraic equations 

and their subsequent resolution.  

In this book we present the key elements of of modern quantum geometry 

and electrodynamics, in particular, the solutions of the relativistic Dirac equation 

for an electron in an external field, quantization of states of the relativistic Dirac 

equation,quantum theory of electromagnetic radiation, mathematical formalism 

of the second quantization with application to configuration interaction quantum 

theory method and others.  

For magisters and PhD students of the the specialities: "Calculational  

Mathematics", "Mathematical Physics". 

Units. Everywhere where otherwise indicated, atomic unitsare used: e=1, ħ=1, 

m=1. In these units: c=137,03597. Atomic units of length, time and velocity: 

ħ
2
/me

2
=5,29177310

-11
m, ħ

3
/me

4
=2,418910

-17
s, e

2
/ħ=2,187710

6
 m/s. Atomic 

unit of energy (a.u.e.) me
4
/ħ

2
=2Ry=27,2116eV=4,359810

-18
J=2,1947510

5
cm

-1
= 

3,1578010
5 

K (kelvin)=6,270910
2 

kcal/mole (me
4
/2ħ

2
= Ry- Rydberg). Energy 

in Coulomb unts (c.u.): 1 c.u.e.= Z
2
 a.u.e. (Z – charge of atomic nucleus). 

Relativistic units: ħ=1, c=1, m=1, e
2
=1/137,03597. 
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Abbreviations (used in the text): 

AS-      autoionization state,  

CI -      configuration interaction, 

DF-      Dirac-Fock (… method), 

IS-       isoelectronic sequence,  

QED-  quantum electrodynamics (…method), 

LR-      laser radiation, 

MP-     model potential, 

MMP- method of model potential,  

PP-      pseudopotential, 

MCA-  multiconfiguration interation approximation, 

PI-       polarization interaction, 

PC-      polarization of the core, 

PPI-     potential of polarization interaction, 

SCP-    self-conjuction procedure, 

OS-     oscillator strength, 

SSF-   self-consistent field,  

PT-     perturbation theory, 

DF-    density functional, 

HF-    Hartree-Fock (…method), 

SCE-  screening effects. 
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Chapter 1 

ELEMENTS OF QUANTUM GEOMETRY AND ELECTRODYNAMICS. 

QUANTIZATION OF STATES OF THE RELATIVISTIC DIRAC 

EQUATION  

 

1.1 The relativistic Dirac equation for an electron in an external field 

 

As is well known from QED (c.f.  Classical Course of theoretical physics 

[1,2], we follow below) and quantum geometry (see. Eg., [3,4]), the wave 

equations of free particles express the properties that, In fact, the general 

requirements associated with the spatio-temporal symmetry. Naturally occurring 

particles is dependent on the physical properties of the processes of their 

interactions. Consistent description of electromagnetic interactions is given by 

one of the most reasonable physical theories - QED. Of course, it should be 

recalled that this formalism is used to describe the electromagnetic interactions 

of a particle is not capable of strong interactions. These particles, of course, are 

the electrons (and positrons), and thus, for the existing theory is available to the 

whole vast area electron QED.  

Not capable of strong interactions also unstable particles - muons, -

particles; they are described by the same QED in the phenomena occurring in 

times short compared to the duration of their life (due to the weak interactions). 

Standard electroweak theory is a generalization of QED, quantum theory of 

electromagnetic interactions. The assumption that there are weak forces in stable 

atoms, and as a consequence of parity violation in them - aspect of the 

electroweak theory, which is absent in QED.  

QED - particularly well-founded and most thoroughly be tested physical 

theory. We have taken numerous experimental verification - always successful; 

in some cases, the accuracy of the agreement between experiment and theory 

reaches 10
-10

. But, despite this, the tiny parity violation observed in atoms, can 

not be reconciled with QED. This - not a question of improving calculations or 

measurements.  

Violation of mirror symmetry is simply incompatible with the 

fundamental hypotheses QED. It is interesting to recall that during the research 

question Fermi weak interaction in the process of absorption of light by atoms 

do not occur for a number of reasons. Firstly, weak interaction processes 
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associated with the collapse (such as beta decay or K-capture), and stable atoms 

such processes naturally absent.  

On the other hand, the weak interactions are extremely small compared to 

the range of atomic dimensions. Thus, either quantitatively or qualitatively even 

in times of Fermi could not imagine how weak interactions could affect the 

nuclear properties. It is well known, the electroweak theory generalizes QED in 

the so-called gauge theories in which the interaction between two particles 

occurs through the exchange of "gauge bosons" spin 1.  

A classic example is given QED: the electromagnetic interactions are 

required to exchange photons - the most well-known gauge bosons. Since 

photons are electrically neutral, the charges of two interacting particles remain 

unchanged. Weak interactions through interaction of neutral currents and 

maintain a charge of interacting particles and transporting them boson (Z ° - 

boson) is also neutral.  

The traditional range of tasks in quantum geometry and the theory of 

QED confined to a single particle. This is - the problem in which the number of 

particles does not change, and the interaction can be entered using the concept of 

an external electromagnetic field. In addition to the conditions that enable the 

external field is considered as a given, the limits of applicability of this theory 

are also limited conditions associated with so-called QED radiative corrections. 

 Following to Refs. [1-3], one could consider the wave equation of the 

electron in a given external field. As usual, let 

 

 ,AA    

 

- 4-potential of the external electromagnetic field (A- vector, Ф- scalar 

potentials). Required equation follows from the Dirac equation by replacing the 

4-momentum operator difference p-eA (е – particle charge): 

 

                                                                                0  meAp .                             (1.1)                             

    

Here and below we use commonly used in relativistic QED units (see. below). 

where е
2
 is replaced by . 

Corresponding to the Hamiltonian equation can also be obtained by 
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replacing the standard Dirac Hamiltonian: 

 

                                            emeApH  )( .                        (1.2) 

 

 It should be remembered that the invariance of the Dirac equation under a 

gauge transformation potential of the electromagnetic field is expressed in the 

fact that his views remain unchanged if at the same time with the 

transformation: 

 

                                                     ipAA                                      (1.3) 

 

(2.here  - an arbitrary function) to convert the wave function according to  

 
iee   . 

 

The current density is expressed in terms of the wave function using the formula 

of the form similar to j  , the absence of an external electromagnetic 

field. Applying equation (1.1) the operation of charge conjugation, we have:  

 

                                              0 meAp ,                                  (1.4) 

 

Next is easy to rewrite this equation in the form: 

 

                                                0~   meAp ,                             (1.5а) 

 

and multiplying it by the matrix CU on the left to find: 

 

           0  CmeAp .                         (1.5б) 

 

It should be noted that the charge-conjugate wave function satisfies the 

equation differs from the original by changing the sign of the charge. On the 

other hand, the operation of charge conjugation means the transition from 
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particles to antiparticles. It follows the well-known conclusion, in particular, if 

the particles are electrically charged, the sign of the charge of the electron and 

positron are automatically opposed.  

Let us now proceed to the consideration of the motion of an electron in a 

centrally symmetric electric field. 

Of course, since the motion in a central field is stored angular momentum 

and parity (relative to the center of the field selected as the origin), the angular 

dependence of the wave functions of the spherical waves correspond to motion 

of free particles.  

Naturally, this does not concern the form of radial wavefunctions. In 

connection with the above, the wave function of the stationary states (in the 

standard representation) must be sought in the form of: 

 

                          

 

   
1

2

,
1

jlm

l l

jl m

f r

g r





 



 
           

                           (1.6) 

where   

 

                                             1 2, 2l j l j l    ,  

 

and the exponent of -1 is introduced to simplify the subsequent formulas. 

 Dirac equation in the standard representation gives the following system 

of equations for   and  [1-3]: 

 

                                                 pm U      ,                                    (1.7) 

                                              pm U      ,                      (1.8) 

where  

                                                        U r e r                                             (1.9) 

 

- potential energy of the electron in the field.  

The definition of the Dirac quantum number in the form:  
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   1 2 1 , 1 2,

( 1 2) , 1 2.

j l j l

j l j l


      
 

    
                     (1.10) 

 

Recall quantum number   takes all integer values, excluding the value of 

0 (with positive numbers correspond to the case 1 2j l  , and the negative - 

the case 1 2j l  ).   

 

                                          1l    ,                                         (1.11) 

so that   

                                           1
p .jlmg g Q

r


 

 
   

 
                              (1.12) 

 

 When this expression is substituted into the first equation of (1.7) 

spherical spinor jlmQ  in both sides of the equation is reduced (see details in 

[1,2]).  

Conducting a similar transformation with the second equation can be as a result 

of the following system for radial Dirac functions: 

 

                                    
1

0,f f m U g
r





                                (1.13) 

                       
1

0,g g m U f
r





                       (1.14) 

or 

                                         0,fr fr m U gr
r


                             (1.15) 

                                  0,gr gr m U fr
r


                     (1.16) 

 

 The behavior of radial functions f and g  at small distances is in many 

details considered in the Refs. [3,4].  
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1.2. Quantization condition of the Dirac equation for an electron 

 in a Coulomb field 

 

 The quantization conditions of the Dirac equation for an electron  in a 

Coulomb field are in details considered in Refs. [1-3]. Below it is important to 

consider a case of the field of attraction: 

 

                                                     U Z r  .                                          (1.17) 

or in conventional units: 

 

                                                        rZeU /2                                         (1.18) 

 

In relativistic units ħ=1, c=1, m=1, commonly used in QED, the square of 

the electron charge е
2
 is replaced by the dimensionless  (1/==137,03597). 

 For small r in equations (1.15,16) can be omitted from members m   

and then write: 

                                              0,
Z

fr fr gr
r r

                                   (1.19) 

           

                                           0.
Z

r gr fr
r r

 
                                     (1.20) 

 

Functions fr and gr are included in each of the above equations written 

equitable manner, so these functions are represented in equal degrees of r:  

 

                                                               fr ar  ,                                 (1.21) 

                                                              gr br  .                                 (1.22) 

 

Substitution into equation allows to get the famous formula: 

                       

                                                          
22 2 Z    .                 (1.23) 

 

It is appropriate to recall that a purely Coulomb field can be considered 
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only if the Dirac theory 1Z  , ie 137Z  .The charge 137Z   may actually be 

concentrated only in a "superheavy" nucleus of finite radius (see also chapter 3 

of the book). Then for the function f  one can have [3]:  

 

 
1 ,

Z
f g const r 

 

   


 

  

                                      
22 2 2 2 21 2Z j Z        .       (1.24) 

 

Although the wave function and may apply at 0r   to infinity (if 1  ), 

integral of 
2

  is, of course, converge. If  
2 2Z  , then both values  from 

(1.22) - are imaginary. Appropriate decisions in 0r   oscillate as  

 1 cos lnr r ), which again corresponds to the unacceptable situation in the 

relativistic theory "fall" to the center. Further, it is useful to exact solutions of 

the wave equation (G. Darwin, 1928; W. Gordon, 1928) as for the states of the 

discrete spectrum, and for continuum states [1-3]. 

Discrete spectrum  m  . Convenient to look for functions f  and g  

as: 

 2 1

1 2 ,f m e Q Q       

               

                                          2 1

1 2 ,g m e Q Q               (1.25) 

 

where there are introduced the notations 

 

2 ,r   

2 2 ,m    

                                                      

2 2 2Z    . 

 

This representation is naturally useful in connection with the behavior of 

functions for 0   and exponential decay with  .  
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 After substituting (1.25) into (1.11) one can obtain the equations: 

 

      1 2 1 2 2 1 2 0,
m

Q Q Q Q Q Z Q Q
m


    



       


 

 

      1 2 1 2 2 1 2 0
m

Q Q Q Q Q Z Q Q
m


    



       


 

 

(the prime denotes differentiation with respect to ) or, after elimination 1Q  or 

2Q ,  

 1 1 12 1 0,
Z

Q Q Q


   


        
 

 

 

 2 2 22 1 1 0
Z

Q Q Q


   


         
 

 

 

When this is taken into account that:   

 

   
2 22 2Z Z m        . 

 

Solving these equations, finite at 0   [1-3]: 

 

                                       1 , 2 1, ,
Z

Q AF


  


 
   

 
                         (1.26) 

 

        2 1 , 2 1,
Z

Q BF


  


 
    

 
,       (1.27) 

 

where  , ,F z  - confluent hypergeometric function. 

Communication between the constants А and В: 
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.
Z

B A
Z

  

  


 


 

 

 Both hypergeometric function in (1.27) should be limited to polynomials 

(otherwise they will grow at   as e 
, and with them will grow - as 

2e
- 

and the whole wave function).  

Function  , ,F z   reduces to a polynomial if the parameter  is a 

negative integer or zero. Next is usually introduced notation:  

 

               .rZ n             (1.28) 

 

If 1, 2,...,rn  then two hypergeometric functions reduce to polynomials. 

If 0rn  , then reduces to the polynomial only one of them. But equality 0rn   

means Z   , and then  

Z m    

 

If 0  , then coefficient B (1.7) vanishes, so that 2 0Q  , and the required 

condition is not violated. If 0  , then B A  , and 2Q  remains at 0rn   a 

divergent function. As a result, the following values of the quantum number rn : 

 

                         
0, 1, 2, ... 0;

1, 2, 3,... 0.
r

при
n

при






 


                  (1.29) 

 

 It follows the familiar expression (Sommerfeld formula) for the discrete 

energy levels: 

 

              
 

 

1
2

2

2
22

1 .

r

Z

m
Z n



 



 
 
  
       

       (1.30) 
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At Z~1 the first terms of the expansion of the formula (1.30) are well 

known form:  

 

 

 

 

 

2 2

2

1 3
1 1

42 r rr

Z Z

m n nn

 

  

   
      

      
. 

 

The last formula makes sense in its exact form at Z~1. It is also 

important to recall that in (1.30) contains a twofold degeneracy of levels (it 

includes only  , with different levels of l  at the same j  still the same). The 

lifting of degeneracy is provided by radiative (QED) corrections. 

 This is followed to determine the overall normalization factor A in the 

wave function, as the wave function of the discrete spectrum must be 

normalized by the condition:  

 
2 3 1d x   

 

 2 2 2 1.f g r dr   

 

The final expression for the normalized wave functions have the form [1]: 

 

 

 

   
 

   

1
2

3 2

12 2 1
2

2 1
4 !

, 2 1,2 1 ,2 1,2

r r

r

r r r

f m n
r e

Z m Z mg
m n

Z m
F n r n F n r

 
  


 


 


    



 

 
     
  

         

  
       

  

    

                                                                                                                    (1.31) 

(upper signs refer to f, lower – to  g). 

Continuous spectrum  m  . The wave functions of this case can be 

obtained from the discrete spectrum replacement: 
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,m i m     

 

,ip   

                                                   

                                                     r

Z
n i

p


   .                   (1.32) 

 

The only thing that needs to be addressed - this normalization functions. 

 Replacement (1.31) allow us to represent the functions f and g in the 

form: 

 

                

 

   

1
2

, 2 1, 2 1 , 2 1, 2 ,

ipr

i i

f m
A e pr

g i m

e F iv ipr e F iv ipr



 





   





 
   

 

         

 

(1.33) 

 

where A- new normalization constant and introduced the notation 

 

                                                                ,
Z

v
p


                                    (1.34) 

                                                    
2i iv

e
ivm

 

 

 



                                   (1.35) 

 

Here, of course, the value   is real, because 

 

                                                
2 22 2Z p Z m p      ).                  (1.36) 

 

The final expression for the wave functions of the continuous spectrum 

has the form:  
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 

 

 

    

3 2 2
1 2

2
2 1

Im
,2 1, 2 .

Re

v

i pr

ivf prm
e

g r

e F iv ipr







 

 


   
 

 

   

      (1.37) 

 

Asymptotic expression for this function:   

 

         
sin2

ln 2 ,
cos 2

f m l
pr v pr

g r


 




   
     

 
       (1.38) 

 

where 

     arg 1 ,
2 2

l
iv

 
                 (1.39) 

or  

     
 

 
 2 1

.
1

i i livivm
e e

iv iv

   

 

  


   
          (1.40) 
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1.3 Elements of quantum geometry and quantum theory of electromagnetic 

adiation. 

 

 In view of the smallness of the fine structure constant 2 1 137e c    

(more precisely: 1/ == 137,03597) compared to 1, which plays a fundamental 

role in QED and characterizing the intensity of the electromagnetic interaction, 

of course, the interaction of electrons with the electromagnetic field can be 

viewed by PT.  

Recall that in the early 70s Hooft [1] showed that the electroweak theory 

of Glashow-Weinberg-Salam also be considered as part of a coordinated PT 

mathematically it in any way that, in fact, is the basis of application of the PT to 

the description of the electroweak interaction.  

In classical electrodynamics the electromagnetic interaction is described 

by the well-known expression: 

 

       ej A

                                            (1.41) 

 

density langranzhiana "field + charges" ( A - 4-potential field j - 4-vector current 

density of the particles). The current density satisfies the continuity equation: 

 

                         0j  ,                            (1.42) 

 

expresses the law of conservation of charge.  

The gauge invariance of the theory is closely connected with this law. As 

is well known [1-3] by replacing 

 

A A     

 

to Lagrangian density (2.1.41) added value ej   , which in view of (1.42) 

can be represented in the form of 4-divergence  

 

 e j    
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and therefore falls in the integration over 4d x  in action:  

 

4S Ld x  . 

 

 Recall that the usual QED 4-vectors j


 and A


 replaced by the 

corresponding second-quantized operators.  

In this case, the current operator is expressed through the  -operators in 

accordance with:  

 

ĵ . 

 

The role of generalized "coordinates" in Lagrangian (2.see Classical 

mechanics)  

 

                                               xdAjexdL 33

int
ˆˆ                                  (1.43a) 

 

play A,,  in each point of space. 

Lagrangian density depends only on themselves "coordinates" q  (but not 

their derivatives x ), so the transition to the Hamiltonian density is reduced only 

to a change in the sign of the Lagrangian density.   

The electromagnetic interaction operator (the integral over the space of 

the interaction Hamiltonian density) has the standard form: 

 

                                                      xdAjeV 3

int
ˆ .                                  (1.43б) 

 

The operator of the free electromagnetic field is the sum of 

 

                                                
n

nnnn xAcxAcA )(ˆ)(ˆ *

,                         (1.44)     

 

containing the creation and annihilation operators of photons in different states 
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(2.numbered index n ).  

 The probability of transition in the quantum system under the influence of 

the perturbation Vint  in the first approximation is given by the formula known 

PT ("golden" rule by Fermi).  

It is usually assumed that the initial and final states of the radiating system 

belong to the discrete spectrum. Then the probability (per unit time) of the 

transition i f  with the emission of a photon is given by the well-known 

formula: 

 

        
2

2 fi i fd V E E dv      ,              (1.45) 

 

where v  conventionally denotes the set of variables that characterize the state of 

the photon and runs through a continuous range of values (in this case the 

photon wave function is assumed normalized to  -function "scale v "). 

 If the photon is emitted with a certain value of the moment, the only 

variable is the continuous frequency  . Integration of the formula (1.45) to 

dv d  eliminate  -function (replacing   the value i fE E   ), and then 

the transition probability is determined simply by the expression:  

 

               
2

2 fiV  .         (1.46) 

 

 If we consider the emission of a photon with a given momentum k, then  

 

        
3 33 22 2dv d k d do     . 

 

It is assumed that the photon wave function (plane wave) is normalized to one 

photon in the volume 1V   and dv  - the number of states have accounted for the 

phase volume 
3Vd k .  

As a result, the probability of emission of a photon with a given 

momentum can obtain the following well-known expression: 
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       
 

3
2

3
2

2
fi i f

d k
d V E E   


   ,                   (1.47) 

or after integration by d : 

 

                  
2

2

2

1

4
fid V do 


 .           (1.48) 

 

As fiV  in (1.8) is substituted matrix element of the form:  

 

                                                   
1

4
2

fi fiV e e j k




 .                         (1.49) 

 

Further, it is useful to formula relating to dipole radiation. Recall E1 

radiative transitions are the most intense in the atomic spectra, and M1 - 

respectively in nuclear systems. Transition current in this case is the matrix 

element of the operator  

ĵ , 

 

in which the  -operators are assumed to expansions in the wave functions of 

the stationary states of the electron in this field.  

Such a change in the occupation numbers by the operator f ia a


, and the 

transition current expression is valid:  

                         

                            ,fi f i f i f ij          ,                        (1.50) 

 

where i  and f - the wave functions of the initial and final states of the 

electron. 

The key point of any theory of radiative transitions - the choice of gauge 

photon propagator. Following [1], we choose the wave function of a photon in a 

three-dimensionally transverse gauge (polarization 4-vector  0,ee  ). 

Then (1.49) the multiplication:  
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jfi fij e e   . 

 

Substitution fiV  in (1.48) gives the well-known expression for the 

probability of radiation into the solid angle do  of a photon with polarization e :  

 

              
2

2 e j k
2

en fid e do





 ,          (1.51) 

where  

                          kr 3j k i

fi f ie d x    .                  (1.52) 

  

Here the summation over photon polarizations is done by averaging over the 

directions of e (in a plane perpendicular to a given direction n k  ) and then 

the result is multiplied by 2, respectively, to two independent features transverse 

photon polarization.  

As a result, the final expression takes the form:  

 

        
2

2 nj k
2

n fid e do




    .               (1.53) 

  

It is appropriate to recall that, as a rule, first consider the case where the 

photon wavelength    large compared with the size of the radiating system а 

and that is usually associated with the smallness of the particle velocities 

compared to the speed of light (see details in Refs. [1-4]).  

In the first approximation in a   (corresponding to dipole radiation) in 

the current transition (1.52) factor 
krie

  (varies little in the area where i  or f  

significantly different from zero) for obvious reasons, is replaced by 1.  

Further, the integral  j 0fi  can be replaced by its non-relativistic 

expression, ie, a matrix element fi  of the electron velocity with respect to the 

Schrödinger wave functions. Seeking matrix element can be expressed as: 
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                                             rfi fii   , 

and     

                                                         r dfi fie  ,  

 

where d - the dipole moment of the electron (in its orbital motion). 

As a result, we can come to the following classical formula for the 

probability of dipole radiation [1,2]: 

 

               

3
2

e d
2

en fid do





              (1.54) 

 

(and direction n appears here in an implicit form: vector e must be perpendicular 

to n).  

Summation over polarizations gives [1,2]:   

 

                                        

3
2

nd
2

n fid do




    .               (1.55) 

  

Under d fi  here obviously refers to a matrix element of the dipole 

moment of the complete system. 

          Integration of the formula (1.55) in all directions allows to obtain the 

following well-known expression for the total probability of radiation [1,2]:  

 

                     

3
24

d
3

fi


  ,                                (1.56) 

 

In conventional terms, this formula has the form:  

 

                     

3
2

3

4
d

3
fi

c


  .           (1.57) 

 

Recall that the radiation intensity I is obtained by multiplying the 
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probability for   that is [1,2] 

 

                       

4
2

3

4
d .

3
fiI

c


           (1.58) 

 

 It is useful to note that the above formulas are completely analogous to 

the known classical formulas (classical electrodynamics) for the intensity of 

dipole radiation system periodically moving particles: the intensity of the 

radiation frequency s s   (where  - the frequency of the motion of 

particles, s - an integer) is 

 

                      

4
2

3

4
d

3

s
sI

c


 ,                              (1.59) 

 

where d s - the Fourier components of the dipole moment, i.e., expansion 

coefficients 

                      d d is t

s

s

t e 






  .                               (1.60) 

 

Next, it is important to present  the elements of the theory of electric and 

magnetic multipole radiation, following to Refs.[1-3].  

In the light of the material presented above, it is convenient to restrict in 

this section considering the emission of a photon with definite values of the 

angular momentum j  and its projection m  on a chosen direction. 

As is known, such photons can be of two types - electric and magnetic. 

Consider the electric multipole radiation. 

We assume that the size of the radiating system are small compared with 

the wavelength. Following [1-3], it is possible to perform all the calculations 

using the photon wave functions in the momentum representation, ie, presenting 

a 4-vector  rA  in the form of a Fourier integral. 

The transition matrix element is [1-3]: 
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                  
 

 
3

3 3

3
r r r r

2

ikr

fi ji fi

d k
V e j A d x e d x j A e 




          (1.61) 

 

In order to simplify the notation is convenient to omit the indices jm  of 

the photon wave functions. Next to Ej -photon use wave function (2.vector 

potential) [1-3]: 

 

                                   ))(|(|
4

)(
2/3

2

jm

э

jm

э

jm YnCYkkA


 



                   (1.62) 

 

     jm

э

jm CYkk )|(|
4

)(
2/3

2
)( 




 


 

 

with an arbitrary gauge constant C equal to, say, 

 

1j
C

j


  . 

 

With this choice in the spatial components of the wave function  A  is reduced 

members comprising spherical harmonics of order 1j   and, accordingly, 
э

jmA


 

comprises only the order of spherical harmonics 1j  , resulting in the 

corresponding contribution fiV  is higher order (in a  ) than the contribution 

from the components
0A  , containing spherical functions of lower order j . 

That is, it should be:  

 ,0 ,A    

 

   
2

3
2

1 4
k njm

j
Y

j


 




     

 

(is there n= k  ).  

After the known transofrmations one could get as follows [1-3]:  
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                  3

n

1
r n

2

ikr

fi fi jm

j
V e d x do e Y

j






 
    .       (1.63) 

 

Usually to calculate the inner integral is used decomposition [1,2], one 

uses the expansion:  

 

               
0

k r
4

l
ikr l

l lm lm

l m l

e i g kr Y Y
r r






 

   
    

   
 ,         (1.64) 

where  

 

                  1 2
2

l lg kr J kr
kr


 .                 (1.65) 

 

In view of the condition  a /<<1 in the integral 
3d x  over a distance play 

a role for which kr<<1. In such cases, usually functions  jg kr  are replaced by 

the first terms of their expansions in kr , i.e.: 

                                   
 

 
.

2 1 !!

j

j

kr
g kr

j



                              (1.66) 

  

The final expression for the matrix element of the transition is as follows [1-3]: 

 

          
  

 
  

1 2
1

,

2 1 1
1

2 1 !!

j
m эj

fi j m
fi

j j
V i e Q

j j










 
 


.        (1.67) 

 

Here it is added the value of  Q
(2.э)

, which are commonly referred to as 2
j
-

dipole electric moments of transition of the system, by analogy with 

corresponding classical values [1,2]: 

 

            
     34 r

r
2 1

э j

j m fi jm
fi

Q r Y d x
j r




 
  

  
            (1.67) 
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 For an electron in the external field 
fi f i   , and then the value (1.67) 

are calculated as the matrix elements of the classical values: 

 

                                                 
  4

2 1

э j

j m jmQ r Y
j





.                               (1.68) 

 

 The above expression for the wave function of the photon corresponds to 

the normalization -function  scale. Then, after substituting it into (1.7) for the 

probability of  Ej - radiation turns well-known formula [1-3]:  

 

          
    

 

  
2

2 1 2

,2

2 2 1 1

2 1 !!

э эj

jm j m
fi

j j
e Q

j j
  



 


  

.         (1.69) 

 

 The angular distribution of multipole radiation is given by [1-3]: 

 

      
   

 

2 2

nY n
1

э jm

jm jm jm jmd do Y do
j j


   


.        (1.70) 

 

 If the order of magnitude of the size of the system (atom and the nucleus) 

is a, then the order of magnitude of the electric multipole moments is, generally 

speaking jэ

jm aQ ~)( . The probability of multipole radiation: 

 

                                                     
jэ

jm kak 2)( )(~                                    (1.71) 

 

i.e. increase in the degree multpolnosti 1 reduces the probability of emission 

with respect to ~(ka)
2
. 

         The most important aspect of the theory - the selection rules for transitions 

of the corresponding type [1,2]. Recall, that the laws of conservation of 

momentum and parity lead to certain selection rules, limits the possibility of 

changing the state of the radiating system.  

If the starting point of the system is Ji, after the emission of a photon with 

momentum j moment of the system can take only the values of Jf, determined by 

the rules of addition of moments ( jJJ fi  || ):  
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                        fifi JJjJJ  || .                   (1.72) 

 

Projection Mi  and Mf  points Ji  and J f  together with the projection m of 

the photon satisfy the rule (of the same law of addition of points): 

 

                 i fM M m  .            (1.73) 

 

 Parity Pi and Pf  initial and final states of the radiating system must satisfy 

the condition f iP P P   where  P - the parity of the emitted photon; For the 

photon electric type  1
j

P   , hence the parity selection rules for electric 

multipole radiation:  

 

                      1
j

i fPP   .          (1.74) 

 

 The selection rules for the total angular momentum and parity are quite 

strict and must be observed in the emission of any system. 

The total probability of М1-radiation expressed in terms of this value by 

the standard formula (in conventional units):  

 

         

3
2

3

4
=

3 c
fi


  .           (1.75) 

 

The expression for fi  becomes [1-3]: 

 

                                               







 xd

sm

e
iffi

3* ˆˆ
2




 sL ,                   (1.76) 

where   riL̂ - the operator of the orbital angular momentum of the particle. 

That is, as you might expect, fi  is a matrix element of the operator:  

 

                                                     sLμ ˆˆ
2

ˆ
sm

e 
 ,                                    (1.77) 
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representing the sum of the operators of the orbital and intrinsic magnetic 

moment of the particle. 

The selection rules for the magnetic multipole radiation similar to the 

rules for the electric case, in particular, for parity it is true the rule: 

 

                            
1

1
j

i fPP


  ,             (1.78) 

 

obtained by substituting parity Mj-photon:  
1

1
j

фP


  . 
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Chapter 2 

CONFIGURATION INTERACTION IN THE SECOND 

QUANTIZATION REPRESENTATION:  

BASICS WITH APPLICATIONS UP TO FULL CI 

 

 

 

2.1. Introduction 

 

 Here the mathematical formalism of the second quantization is applied to 

the configuration interaction (CI) method in quantum chemistry. Application of 

the Wick‘s theorems for calculation of the matrix elements over configurations 

leads to a simple logical scheme which is valid for configurations of an arbitrary 

complexity and can be easily programmed.  

 The main advantage of the configuration interaction (CI) method [5] is the 

possibility of improving a trial wave function by extending considerably a set of 

basis configurations. The simple analytical expressions for the matrix elements 

of the Hamiltonian over the singly excited singlet and triplet configurations are 

well known. Thus an interaction of these configurations became a standard 

method for computing excited states of molecules. Similarly, an interaction 

between singly excited configurations is frequently used for the calculation of 

the electronic structure of radicals, while doubly excited configurations have 

been still used occasionally. Finally, not much is still known about contributions 

of configurations involving an excitation of three and more electrons.  

 Development of the expressions for the CI matrix elements can be 

considerably simplified when the second quantization formalism [5] is used 

instead of the usual method based on superposition of determinants (see also 

Appendix).  

 The former approach has been used in order to obtain the matrix elements 

over the doubly excited singlet configurations [6]. A comparison with the 

corresponding elements over singly excited configurations shows that the 

expressions for the CI matrix elements become progressively complicated as 

configurations become more complex.  

 The necessity to include more and more complicated formulae into the 
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computer program is the main obstacle to a wider use of the extended 

configuration sets. In order to overcome these difficulties it is necessary to 

abandon the derivation of the analytical expressions for the matrix elements and 

to delegate this work to a computer at an early stage of the calculation. The 

simple rules to compute the matrix elements in the second quantization 

representations which follow from Wick‘s theorem [7] and are also good for 

configurations of an arbitrary complexity need to be programmed. The present 

review is devoted to an actual realization of the above suggestion [8, 9]. Since 

the second quantization formalism has been described by many authors [5] we 

shall give only those formulae and statements which are necessary for our 

discussion.  

 In CI computations one first includes those configurations which do not 

differ much from the ground configuration. For example, the singly excited 

configurations are constructed from the Slater determinants built from the 

ground state determinant by changing a single row. To account for only the 

changes in an explicit form in the many-particle SCF theory, an elegant 

mathematical apparatus known as hole formalism has been developed. Besides 

offering a simple physical interpretation, the hole formalism reduces the 

calculations considerably. This formalism generalized on an arbitrary 

orthonormal orbital set will be exposed below. 

 

2.2 The Second Quantization and CI Method 

 

 Let us consider a system of electrons in an external field, e.g. in a field of 

fixed nuclei. The Hamiltonian of this system is represented by a sum of one 

electron operators ˆ ( )h k , each of which acts on coordinates of one of the 

electrons and contains its kinetic energy operator and the external field potential, 

and a sum over all possible pairs  of  electrons of  the  electron  interaction  

operators ˆ ( , )U k l .  

 Let be given a complete orthonormal set of orbitals 1 2 3, , ,...   . Multiplying 

each orbital i  in turn by the spin functions  and  which are eigenfunctions of 

the spin angular momentum operator with the eigenvalues 1/ 2  and 1/ 2 (in 

units of ) one obtains a complete orthonormal system of spin orbitals i : 
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  1 1 2 2 3 3, , , , . ,...           , 

where 

  ,i i i i        . 

 In order to pass to the second quantization representation we shall now 

introduce creation ˆ
iA

  and annihilation ˆ
iA

operators for an electron in a state i . 

They obey anticommutation relations   

 

 ˆ ˆ ˆ ˆ, , 0i j i jA A A A   

 

 
 

    
   

, ˆ ˆ,i j ijA A   

 


  
 

.  (2.1) 

 

 The many-electron spin-free Hamiltonian is then given by 

 

 
1ˆ ˆ ˆ ˆ ˆ ˆˆ ( | )
2

i j ij i j l k

ij ijkl

H A A h ij kl A A A A     

 

  

 



   , (2.2)  

 

where 

 

  ˆ| |ij i jh h  ,  (2.3) 

  ˆ( | ) | |i j k lij kl U   . (2.4) 

 

 Operators in the second quantization representation, including the 

Hamiltonian (2.2), act in a linear space, say R , with basis which can be 

constructed in the following way. First, one introduces a vacuum state vector 0  

defined for all i  and   by 

 

  ˆ 0 0iA  , ˆ0 0iA

     (2.5) 

 

with the vacuum state supposed to be normalized   

 

 0 0 1 . (2.6) 

 

 Acting on the vacuum state by each of the creation operator one obtains all 

one-particle states   
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 ˆ 0ii A  . (2.7) 

 

The states with two electrons are generated by operator ˆ
jA 



  acting on the state 

i  

 

 ˆ ˆ ˆ, 0j j ij i A i A A      

 
   . (2.8) 

 

It follows from the anticommutation relations (2.1) that only those vectors 

are linearly independent and not equal to zero for which i j  and    are not 

valid simultaneously. 

Following this procedure we obtain a set of linearly independent states 

with an arbitrary number of electrons 

  

 
1 1 2 2 3 3

ˆ ˆ ˆ ˆ 0
N Np p p pp A A A A         ,  (2.9) 

 

where symbol p covers a totality of numbers  1 2 3, , ,..., Np p p p , and symbol  – a  

totality of numbers 1 2 3, , ,..., N    , and  if 1n np p   then 1n n   . A  set  of  all  

these  states  with 1,2,3,...N   determines the basis we have wished to construct. 

Using the anticommutation relations (2.1) and definitions (2.5) and (2.6) 

one can show that each of the basis vectors is an eigenvector of an operator 

 

 ˆ ˆˆ
i i

i

N A A 



  (2.10) 

 

with an eigenvalue N .  

          The Hamiltonian (2.2) commutes with the number-of-particles operator N̂  

and each one of its eigenvectors belongs to one of the subspaces NR  of the space 

R  built on the basis vectors with definite N . For this reason we fix a number of 

particles N  in our system and will construct corresponding eigenvectors.  

 The expansion coefficients of the eigenvectors of Ĥ  over the basis vectors are  

usually determined as solutions of the eigenvalue problem for a matrix with the 



 36 

elements ˆp H p   .  

For the practical determination of approximate eigenvectors the CI matrix is 

truncated before diagonalization. The order of the CI matrix which is to be 

diagonalized can be decreased considerably if there are operators which 

commute with the Hamiltonian as well as between each other.  

          Then using an appropriate unitary transformation one goes from the set of 

vectors p  to a new set of the basis vectors which are eigenvectors of these 

operators, and an initial eigenvalue problem reduces into several eigenvalue 

problems of a smaller order. Each of them corresponds to a definite totality of 

eigenvalues of the operators mentioned.  

 The spin-free Hamiltonian always commutes with the total spin projection  

operator ˆ
zS  and with the square of the total spin operator 2Ŝ . These two 

operators commute with each other also. We shall first find the expressions for 

them both in the second quantization representation. Expression for ˆ
zS  is 

obtained from the general definition of an one-particle operator 

 

  ˆ ˆ ˆ ˆ| |i j i j

ij

Q A A Q   



 

 



   ,  (2.11) 

 

where one should place ˆ ˆ
zQ S . Using the orthonormality of the spin-orbitals and 

the definition 

 

  
1ˆ
2

z i iS      

one obtains  

 

  
1ˆ ˆ ˆ
2

z i i

i

S A A 



   . (2.12) 

 

 To construct an operator 2Ŝ  we begin with the well known Dirac 

expression [10] 

 

  2

1

1ˆ ˆ(4 )
4

kl

k l N

S N N P

  

    .  (2.13) 
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In the second quantization representation the first term has the same pattern 

except that the total number of particles N must be replaced by the corresponding 

operator N̂  defined by (2.10).  

 The operator ˆ
klP  which interchanges the spin functions of two electrons 

k and l  in the states i  and j   corresponds to the two-particle operator 

 

   , ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

i j j i i j j iA A A A A A A A       



   

  .  (2.14) 

 

Thus, finally 

 

   2

, ,

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ(4 )
4 2

i j j i i j j i

ij

S N N A A A A A A A A       



   

     .  (2.15) 

 

Later we shall consider a construction of the eigenvalues of the operators ˆ
zS  and 

2Ŝ . 

2.3 Hole Formalism 

 

 Consider the subset of the spin-orbitals  
1

 , which  contains  first 2 Fn  one-

particle states i  with Fi n  or one can take Fn  pairs of arbitrary spin-orbitals  

, 1i   and , 1i   with subsequent renumbering of them, and form a vector 

  0 , 1 , 1

1

ˆ ˆ 0
Fn

i i

i

A A 

 



  .  (2.16) 

This vector corresponds to the Slater determinant built on the spin-orbitals 

chosen. A determinant built from the same spin-orbitals except j  corresponds 

to a vector  

   , , 1 , 1

1( )

ˆ ˆ ˆ 0
Fn

j i i

i i j

A A A

  

  

 

   . (2.17) 

 

Acting on   by a unit operator 

  ˆ ˆ ˆ ˆ
j j j jA A A A   

   
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and using relations (2.1) and (2.5) one obtains 

 

   0
ˆ .j FA j n      (2.18) 

This means that action of an operator ˆ
jA   with Fj n  on the vector 

0  leads to 

the annihilation of a particle in an occupied state j , i.e. to the creation of a 

hole in this state.  

 Thus the operators ˆ
iA  and ˆ

iA


 with Fi n can be interpreted as creation 

and annihilation respectively of the holes in the states of the subset  
1

 . It can 

be shown that the Slater determinant with u  rows changed by  other v  rows in 

the second quantization representation corresponds to a vector obtained from 

0  by action of u  hole creation and v  particle creation operators in the 

corresponding states.  

 All basis vectors for the CI method can be presented in this way and we 

shall now describe the corresponding formalism.  

 Using the anticommutation relations (2.1) and a definition of the vacuum 

state (2.5) it is easy to see that  

   0 0
ˆ ˆ0, 0,i i FA A i n 

      ,  (2.19a) 

 

   0 0
ˆ ˆ0, 0,i i FA A i n 

     ,  (2.19b) 

 

i.e. 
0  is a vacuum state with respect to the creation and annihilation operators 

of the holes and particles. In the following discussion under the vacuum state we 

always imply the state 
0  and not the initial state 0 .  

 We shall now introduce the important concept of a N-product of the 

operators 
1 2 3
ˆ ˆ ˆ, , ,...F F F denoted as 

1 2 3
ˆ ˆ ˆ( )N F F F  . In order to go from the usual 

product to a normal one we must transpose the operators in such a way that all 

the hole and particle creation operators are placed to the left of the annihilation 

operators, and each transposition of a pair of the operators must be followed by 

change of a sign.  

 Under the sign of a N-product the operators can be arbitrary transposed. 

The sign depends only on the parity of transposition.  An  important  property  
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of  the N-product, a consequence of (2.1), is that its average value over the 

vacuum state is equal to zero    

 

  
0 0( ) 0N    . (2.20a) 

An obvious exception is the case when under the sign of a N-product there is a 

constant or an expression not having creation or annihilation operators. Then its 

average over the vacuum state is equal to itself 

 

  
0 0( )N c c   .  (2.20b) 

 

 A reduction of operator products to a sum of the N-products is extremely 

useful as shown in calculating the vacuum average of the operator products by 

expression (2.20). This reduction  can be easily performed for a product of two 

operators using the N-products and the anticommutation relations (2.1): 

 

 ˆ ˆ ˆˆ ˆ ˆ( )AB N AB AB  . (2.21) 

 

The symbol ˆ ˆAB  denotes a c-number called a convolution of the operators 

Â  and B̂ .  

Only the following convolutions of the particle and hole operators are not 

equal to zero: 

 

  ˆ ˆ 1,i i FA A i n 

   ,  (2.22a) 

 

  ˆ ˆ 1,i i FA A i n 

   .  (2.22b) 

 

Thus introducing the population numbers  

 

 
1,

0,

F

i

F

i n
n

i n

 
  

 
 (2.23) 
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one obtains for all convolutions  

 

 ˆ ˆ ˆ ˆ 0i j i jA A A A   

 

   , (2.24a)    

 

           ˆ ˆ
i j i ijA A n   

  ,  (2.24b) 

 

              ˆ ˆ (1 )i j i ijA A n   

   . (2.24c) 

 

The rules for reduction of the operator product to a sum of the N-products in a 

general case  are given by the Wick‘s theorems [11]. The theorems given in [11] 

have been formulated by Wick [7] for the chronological products. We give a 

particular formulation of these theorems for the operators with equal times.  

 

 Theorem 1. A product of the creation and annihilation operators is 

represented by a sum of the normal products with all possible convolutions 

including a N-product without convolutions. The sign of each term is determined 

by a number of the operator transpositions needed that the convoluting operators 

are grouped together: 

  
1 2 3 1 2 3 1 2 3 4 5

1 3 2 4 5 1 2 3 4 5 6 7

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ... ( ) ...

n n n

n n

F F F F N F F F F F F N F F F F

F F N F F F F F F F F N F F F F

           

       

 

 

 Theorem 2. If some operators in the product to be reduced stand from the 

beginning under the sign of the N-product then the reduction is made in the same 

way except that the convolutions must be omitted for those operators which 

from the beginning were standing under the  sign  of  the  same N-product. 
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2.4 Expansion of the Physical Value Operators over the N-products 

 

 For a one-particle operator using (2.21) and (2.24) one obtains from (2.11) 

 

   ˆ ˆ ˆ ˆ ˆ
i j i j i i i

ij i

Q N A A Q n Q     

 

   

 



   .  (2.25) 

In particular, if an operator Q̂  does not act on the spin variables, then 

 

                                               ˆ ˆ ˆ 2i j ij i ii

ij i

Q N A A Q n Q 



   ,                          (2.26) 

 

where 

 

   ˆ
ij i jQ Q  .  (2.27) 

 

One obtains in the same way from (2.12) 

 

   
1ˆ ˆ ˆ
2

z i i

i

S N A A 



   .  (2.28) 

 

The number-of-paticles operator (2.10) becomes 

 

   ˆ ˆˆ 2i i F

i

N N A A n 



  .  (2.29) 

 

 Now we shall transform the Hamiltonian (2.2). The first sum in (2.2) is 

transformed according to (2.26) with ˆQ̂ h . In order to transform a sum 

corresponding to the electron interaction we use the first Wick theorem. Its 

application to a product of four operators gives 
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     

   

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

i j l k i j l k i k j l j l i k

j k i l i l j k i k j l i l

A A A A N A A A A A A N A A A A N A A

A A N A A A A N A A A A A A A A A

               

             

       

       

      

      

   

    ˆ ,j kA 





  (2.30) 

 

where only those terms are written down which can have non-zero convolutions. 

Putting this expansion into (2.2) and substituting all convolutions by their values 

according to (2.24), after the necessary summations one obtains 

 

    0

1ˆ ˆ ˆ ˆ ˆ ˆˆ ( | )
2

ij i j i j l k

ij ijkl

H E F N A A ij kl N A A A A     

 

  

 



    ,  (2.31) 

where  

 

  0 2 2 | ( | )i ii i j

i ij

E n h n n ij ij ij ji       (2.32) 

 

and 

 

    2 | |ij ij k

k

F h n ik jk ik kj     . (2.33) 

  

Expression (2.32) is the well known equation for the energy in the Hartree 

– Fock approximation and ijF  are the matrix elements  

 

 ˆ
ij i jF F    

 

of the Fock operator built on the orbitals 1 2 3, , ,...,
Fn    . If these orbitals are 

eigenfunctions of the SCF Fock operator with eigenvalues i  then 

 

  ij i ijF    

 

and the Hamiltonian (2.31) becomes 
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     0

1ˆ ˆ ˆ ˆ ˆ ˆˆ ( | )
2

i i i i j l k

i ijkl

H E N A A ij kl N A A A A     

 

   

 



    .  (2.34) 

 

This particular expression for the Hamiltonian is applicable only under the 

conditions mentioned. The general expression (2.31), however, is valid for an 

arbitrary orthonormal set of orbitals.  

 Following the same procedure one can obtain an expression for the 

operator 2Ŝ  given by (2.15). We present the final result 

 

     

   

2

, ,

( )

, , , ,

( )

3 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 2 ( )
4 4 4

3 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .
4 2

i i i i j j i i i j i

i ij ij i j

i i i i i j j i

i ij i j

S n N A A N A A A A N A A A A

N A A A A N A A A A

         

  

       

 

    

 



   

   



    

 

  

 
 (2.35) 

 

The fourth sum in (2.35) contains terms with  i j  from the third and fifth sums. 

 Having derived expressions for the operators ˆ
zS  and 2Ŝ  in an appropriate 

form we can construct the basis vectors for the CI method which are 

eigenfunctions of these operators. First we note that any vector obtained as a 

result of the action of pN  particle and hN  hole creation operators on the vacuum 

state 
0  is an eigenvector of the operator N̂  with an eigenvalue 2p h FN N n   

which is equal to the total number of particles.  

        By fixing this number we need consider only vectors with a definite value 

of the difference p hN N . In most cases the vacuum state can be chosen in such 

a way that pN  is equal to hN  (the ground state of a molecule with closed shell) 

or differs from hN  by one (a radical). 

 Next we choose the electronic configuration. Let us set up the electronic 

configuration by selecting the orbitals corresponding to pN  particles and hN  

holes irrespective of their spins. We shall denote it as 1 2 3 1 2 3( ... , ... )
h pN Nk k k k m m m m  

where ik  corresponds to the hole orbitals, and im  numerate the particle orbitals. 

These numbers are supposed to be arranged in a non-decreasing order (naturally 

1,
hN F Fk n m n  ). Furthermore, according to the Pauli principle each number 

cannot occur more than once.  

 Now  for  the  configuration above 1 2 1 2( ..., ...)k k m m  we  construct all  possible  



 44 

vectors  as 

 

 
1 1 2 2 1 1 2 2 0

ˆ ˆ ˆ ˆ
k k m mA A A A   

 

      , (2.36) 

 

which  in  the  following  discussion  are  called  the  primitive  vectors.  Each  

of  the  spin   indices 1 2 1 2, ,..., , ,...     independently assumes values +1 and –1 

except those cases when 1i ik k   and 1i im m   for which necessary 1 1i i      

and 1 1i i  
    . Under these conditions the primitive vectors constructed form 

an orthonormal system. Each of them  is  an  eigenvector  of  the operator ˆ
zS  

with the eigenvalue  

 

    
1

2
S p p h hM N N N N       

  ,   

 

where , , ,p p h hN N N N   
is the number of particle and hole operators with the spin 

+1 and –1 correspondingly. 

To determine the necessary basis vectors one selects for each 

configuration all primitive vectors (2.36) with a given value of the difference 

   p p h hN N N N      , construct a matrix of the operator 2Ŝ  for them, and 

diagonalizes it. The result of the application of the operator 2Ŝ  on the primitive 

vector represented at first sight as a cumbersome expression (2.35) is obtained 

by the following rules. 

Rule 1. The action of the first four sums in (2.35) on a vector (2.36) 

reduces to a multiplication of it by a constant. Its value is equal to the value of 
2

SM  plus half the sum of pN  and hN  minus the number of orbitals occupied in 

pairs by particles and holes with opposite spins. All diagonal elements of the 

matrix of the operator 2Ŝ will be equal to the constant found so far.  

Rule 2. The remaining part of the expression for 2Ŝ  acts on a vector 

(2.36) converting it to a sum of the vectors orthogonal to (2.36). Each of them 

differs from the initial vector by change on opposite the spin indices of two 

particle-particle or hole-hole operators with different spins or the particle-hole 

operators with equal spins. In the later case a vector enters a sum with a minus 
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sign. It is necessary to consider  all mentioned pairs of operators used to 

construct an initial vector except those operators  which correspond in pairs to 

the same orbitals.  

              

 

2.5 General Approach to Calculation of the Matrix Elements 

 

 Previous treatment shows that the basis vectors are linear combinations of 

the primitive vectors, and the operators of the important physical values reduce 

to three basic types:   

 

 0
ˆ ( )N c  , (2.37a)   

 

  1 ,
ˆ ˆ ˆ

ij i j

ij

Q N A A  



  , (2.37b) 

  

                         2

1ˆ ˆ ˆ ˆ ˆ( | )
2

i j l k

ijkl

ij kl N A A A A   



 

 



   . (2.37c) 

 

 Take two primitive vectors corresponding to the same or to different 

configurations   

 

 
1 1 2 2 1 1 2 21 0

ˆ ˆ ˆ ˆ
k k m mA A A A   

 

      , (2.38a) 

 

  
1 1 2 2 1 1 2 22 0

ˆ ˆ ˆ ˆ
l l n nA A A A   

 

      . (2.38b) 

 

We shall calculate for them the matrix elements of each of the operators (2.37). 

Denoting 

  
1 1 2 2 1 1 2 21

ˆ ˆ ˆ ˆˆ
k k m mR A A A A   

 

   , (2.39a) 

 

  
2 2 1 1 2 2 1 11

ˆ ˆ ˆ ˆˆ
m m k kR A A A A   

  

    , (2.39b) 

 

  
1 1 2 2 1 1 2 22

ˆ
l l n nR A A A A   

 

    , (2.39c) 
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the matrix element of an operator ̂ , any of the operators (2.37), may be 

considered as the vacuum average 

 

 
1 2 0 1 2 0

ˆ ˆˆ ˆR R       .  (2.40) 

 

 To calculate (2.40), the product 
1 2

ˆˆ ˆR R  must be reduced applying the 

Wick‘s theorems to the sum of the N-products. As a result of the averaging 

according to (2.20) only those terms  remain  which  are  c-numbers, i.e. those 

terms in which all operators in 
1 2

ˆˆ ˆR R  enter the convolutions. 

 The advantage of the presentations of the physical value operators as a sum 

of N-products is now evident. Since 
1R̂  is a product of the particle and hole 

annihilation operators only, and 
2R̂  – of the creation operators only, then 

1 1
ˆ ˆ( )R N R  , 

2 2
ˆ ˆ( )R N R  and according to the second Wick‘s theorem one must 

consider only the convolutions between the operators 
1R̂ , ̂ , and 

2R̂ .  

 After this preliminary remark we continue the determination of the value of 

the matrix elements. First we find the maximum number of convolutions which 

can be constructed between the operators from 
1R̂  and 

2R̂ . This number is equal 

to the number of particles and hole operators in 
1R̂  which are repeated in 

2R̂ . 

The operators in 
1R̂ as well as in 

2R̂  may be transposed  in an arbitrary way 

multiplying the value of the matrix element by 1( 1) p , where 1p  is the total 

number of transpositions.  

 For this reason it is convenient to order the operators in 
1R̂  and 

2R̂  first, 

transposing them in such a way that the repeating operators are placed in 
1R̂  and 

2R̂  in the same order to the right of the non-repeating operators.  

 We shall assume in the following that this ordering is performed. The total 

number of non-repeating operators  in 
1R̂  and 

2R̂  will be denoted q . Because 

each of these q  operators may be convoluted with one of the operators from ̂  

one can state a priori that the matrix element 

 

  
0 1 2 0

ˆˆ ˆR R           
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will not be equal to zero only for 0q   if 
0

ˆ ˆ , for 0,2q   if 
1

ˆ ˆ , and for 

0,2,4q   if 
2

ˆ ˆ .  

 We shall consider each of these cases separately. In cases when the total 

number of the operators in 
1R̂  and 

2R̂  is less than 2 for 
1

ˆ ˆ  or less than 4 for 

2
ˆ ˆ  the value of the corresponding matrix elements is obviously equal to 

zero. 

 Case 1: 
0

ˆ ˆ , 0q  . The convolution which gives a non-zero result can 

be done in a single way convoluting in pairs the repeating operators. When 
1R̂  

and 
2R̂  are correctly ordered there is always an even number of other operators 

between the convoluting operators. Thus, the number of transpositions required 

by the first Wick theorem is also even and each convolution according to (2.24) 

is equal to unity. Finally the value of the matrix element will be equal to 

 

  1

1 0 2
ˆ ( 1)p c     .  (2.41)    

 

 Case 2: 
1

ˆ ˆ , 0q  . In this case the vacuum average is equal to the sum 

of the terms each of which is the result of a convolution of two operators from 

1̂  with two equal operators from 
1R̂  and 

2R̂ . The other operators repeating in 

1R̂  and 
2R̂ , if there are any, convolute between them in pairs. The final result is    

 

   1

1 1 2 ,
ˆ ( 1) 1 2p

ii i

i

Q n



      ,  (2.42) 

 

where a pair of indices ,i   covers the interval met in 
1R̂ .  

 Case 3: 
1

ˆ ˆ , 2q  . The single term in the expansion of 
1 2

ˆˆ ˆR R  over the 

N-products the vacuum average of which may be different from zero is obtained 

in the following way. All operators from 
1R̂  repeating in 

2R̂  convolute with the 

corresponding operators from 
1R̂ . Two non-repeating operators convolute with 

the operators from 
1̂ .  

 The results is      

 

  1 2

1 2 1 2 11 1 2 ,
ˆ ( 1)p p

i iQ       ,  (2.43) 
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where 2p  is the number of transpositions necessary to place in the product 
1 2

ˆ ˆR R  

the non-repeating operator with a cross at the left of the non-repeating operator 

without a cross (2. 2p is equal to 1 or 0), and a pair of indices 1 1,i   runs over the 

indices of the non-repeating operator  with a cross, and a pair 2 2,i   – without a 

cross in the product 
1 2

ˆ ˆR R .       

 Case 4: 
2

ˆ ˆ , 0q  . For each pair of operators from 
2R̂  in the matrix 

element expression for this case there are possible four terms identical in pairs 

obtained by convoluting these operators and the corresponding pair of operators 

from 
1R̂  with four operators from 

2̂    

 

        1

1 2 2
ˆ ( 1) | | 1 2 1 2p

i j

ij

ij ij ij ji n n



 



          ,  (2.44) 

 

where a pair of indices ,i   runs in the interval met in the operators from 
1R̂ and 

a pair ,j   covers all values of indices of the operators from 
1R̂  placed to the 

right of the operator with indices ,i  .     

 Case 5: 
2

ˆ ˆ , 2q  . In the expansion of each of the repeating operators 

in 
2R̂  four terms identical in pairs may not be equal to zero. They are obtained 

by the convoluting with the operators from 
2̂  of two non-repeating operators, 

and one of the operators in 
2R̂  repeating in 

1R̂ , and the corresponding operator 

from 
1R̂ .  

 The final result is  

 

       1 2

1 2 11 2 2 1 2 1 2
ˆ ( 1) 1 2 | |p p

i

i

n ii ii ii i i  



           ,  (2.45) 

 

where a pair of indices ,i   covers all values met in the repeating operators, and 

a value of 2p  and indices 1 2 1 2, , ,i i    are defined as in case 3.       

 Case 6: 
2

ˆ ˆ , 4q  . In this last case there may not be equal to zero the 

four in pairs identical terms obtained by convoluting four non-repeating 

operators from 
1 2

ˆ ˆR R  with four operators from 
2̂ . The result can be obtained in 

the following way.  
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 Let us write all non-repeating operators in the same order as they are placed 

in the product 
1 2

ˆ ˆR R  and order them in such a way that the cross operators stand 

to the left of the non-cross operators. Let 3p  be the number of transpositions 

made in order to obtain standard order 

 

  
1 1 2 2 3 3 4 4

ˆ ˆ ˆ ˆ
i i i iA A A A   

  . 

 

Then the value of the matrix element is   

 

     1 2

1 4 2 3 1 3 2 41 2 2 1 2 4 3 1 2 3 4
ˆ ( 1) | |p p i i i i i i i i                   .  (2.46) 

 

2.6 Matrix Elements of the Physical Value Operators for Molecules and 

Radicals with Account of Singly and Doubly Excited Configurations as an 

Example of the General Approach 

 

 Analytical expressions for the matrix elements of the operators are useful 

only for simple configurations and for the derivation of various general 

statements. For complex configurations it is expedient to adopt a calculation 

scheme given above and suitable for programming. Now we give for the case of 

the singly and doubly excited configurations for molecules and radicals some 

basis vectors which will be useful in further applications [12]. They are given in 

a final form, and some of them are compared with the expressions available in 

the literature. When deriving analytical expressions for the matrix elements we 

did not assume any restrictions on an orthonormal orbital set  used for the 

construction of the configurations. We also consider some general expressions 

for the SCF orbitals and will show that in the case of radicals some Hamiltonian 

matrix elements between the ground configuration and the singly excited 

configurations vanish. Finally, we shall give formulae for the calculation of 

some molecular and radical properties by the CI method such as electronic 

density of atoms, bond orders, transition moments, and spin distribution. 

 

2.6.1 Basis Vectors 
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 Consider the singly excited configurations ( , )k m  of a molecule with closed 

shells in the ground state. In this case 1p hN N   and four primitive vectors are 

possible: 

 

 
1 0

ˆ ˆ
k mA A

     , 
3 0

ˆ ˆ
k mA A

    , (2.47a) 

 

             
2 0

ˆ ˆ
k mA A

    , 
4 0

ˆ ˆ
k mA A

    . (2.47b) 

 

 Using the rules of p.4 above one obtains 

 

  2

1 1 2Ŝ      , 2

3 3
ˆ 2S    , (2.48a) 

 

  2

2 1 2Ŝ       , 2

4 4
ˆ 2S    . (2.48b) 

 

 As expected, the matrix of the operator 2Ŝ  reduces to one two-row and two 

one-row matrices. By diagonalizing the former one obtains the following 

normalized basis vectors 

  1

1 1 2

1
, 0, 0,

2
SM S        (2.49a) 

 

            3

1 1 2

1
, 0, 1,

2
SM S         (2.49b) 

 

  3

2 3 , 1, 1,SM S       (2.49c) 

 

  3

3 4 , 1, 1.SM S       (2.49d) 

 

There are unusual signs in the first two vectors. 

 In the case of a radical the vacuum state 
0  is chosen as the closed shell 

of its ground state. Then one kind of the basis vectors is obviously 

  2

1 0
ˆ

mA

   . (2.50) 

 



 51 

 Now we consider the basis vectors for the configuration ( , )k mn  of a radical 

limiting of ourselves to the vectors with 1 / 2SM  . The corresponding primitive 

vectors are 

  
5 0

ˆ ˆ ˆ
k m nA A A 

     ,  (2.51a) 

 

  
6 0

ˆ ˆ ˆ
k m nA A A 

     , (2.51b) 

 

  
7 0

ˆ ˆ ˆ
k m nA A A 

     . (2.51c) 

 When n m , the vector 
6  vanishes, and the vector 

5  differs from 
7  

only by sign and becomes another basis vector 

 

  2

2 0
ˆ ˆ ˆ

k m mA A A 

     . (2.52) 

 

 Let be n m . Writing 

 

  
7

2 2

5

ˆ
i ij j

j

S S


   , (2.53) 

 

and using the rules of # 4 one obtains a matrix 

 

  2

7 / 4 1 1

1 7 / 4 1

1 1 7 / 4

S

 
   
 

  

. (2.54) 

 

Diagonalizing this matrix we obtain eigenvector (2.1, –1, 1) corresponding to an 

eigenvalue 5/4 and two vectors (2.1, –1, –2) and (2.1, 1, 0) for degenerated 

eigenvalue 3/4 . Therefore the normalized doublet and quartet basis vectors are, 

respectively, 

 

   2

3 5 6 7

1
2

6
       , (2.55a) 
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   2

4 5 6

1

2
      (2.55b) 

and  

   4

1 5 6 7

1

3
       . (2.56) 

 

The doublet basis vectors are determined up to a unitary transformation. We 

have chosen the vectors (2.55) to correspond to those found in the literature. 

 

2.6.2 Elements of the CI matrix 

 

 The final expressions for the matrix elements of the Hamiltonian (2.31) 

obtained by using the results of p. 2.5 above are now given. 

 

  Molecule    

 

 1,3

0 1
ˆ 2 kmH f F    , (2.57) 

  

 1,3 1,3

1 1 0
ˆ 2 ( | ) ( | )kk mm kk m m mm kkH E F F f km mk km k m        

           , (2.58) 

 

where   

 

 
0 1,

1 0.

for S
f

for S


 


  

 

 Here and in the following expressions the primes are used for numbers of 

those particles and holes which constitute the basis vectors placed at the left of 

the Hamiltonian. 

Radical 

                                                 2 2

1 1 0
ˆ

mm m mH E F  
    , (2.59) 

 

                   

2 2

2 2 0
ˆ (2 ) ( | )

[( | ) 2( | )],

kk mm mm kk m m kk kk

mm

H E F F m m mm

km mk km k m

    



      



        

    
   

(2.60) 
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2 2 1
3 3 0 2

ˆ ( ) { (2 2 )

(2 ) [2( | ) ( | )] 2 ( | )

[3( | ) 2( | )] ( | ) (

kk mm nn mn nm kk mm n n nn m m mn m n nm n m

kk mm nn mn nm kk mm

nn mn nm

H E F F F F

F m n mn m n nm kn k n

m k k m m k mk m k nk

         

     

  

             

      

  

        

          

          | )},n k mk

  

(2.61) 

 

2 2 1
4 4 0 2

ˆ ( ) { (2 2 )

(2 ) [2( | ) ( | )] 2 [2( | )

( | )] [( | ) 2( | )] [(

kk mm nn mn nm kk mm n n nn m m mn m n nm n m

kk mm nn mn nm kk mm

nn mn

H E F F F F

F m n mn m n nm kn nk

kn k n m k k m m k mk m

         

     

 

             

      

 

        

          

          | ) 2( | )]

[( | ) 2( | )]},nm

k nk m k k n

n k mk n k k m 

   

    

  (2.62) 

                                       2 2

1 2
ˆ ( | )mm kmH F km mm 

     , (2.63) 

 

                                    2 2

1 3

3ˆ ( | )
2

nm kmH F km mn 
     ,  (2.64) 

 

                   
2 2

1 4

1ˆ [2 2( | ) ( | )]
2

mm kn nm kmH F F km nm km mn  
        ,         

                                                                                                                     (2.65) 

2 2

2 3

1ˆ { [( | ) ( | )] 2 ( | ) 2 ( | )}
6

kk mm nmH m m mn m m nm km nk m k k m    
              , 

 (2.66) 

 

2 2

2 4

1ˆ { ( ) ( | )
2

[2( | ) ( | )] [( | ) ( | )]},

kk mm m n nm m m nm mm kk kk

mm nm

H F F F m m mn

km nk km k n m k k m m k mk

     

 

        

 

        

          

 

(2.67) 

2 2

3 4

1ˆ { ( ) ( )
3

[( | ) ( | )] [2( | ) ( | )]

[( | ) ( | )] [( | ) 2( | )]

[( |

kk mm n n nn m m mn m n nm n m kk mm nn mn nm

kk mm

nn mn

nm

H F F F F F

m n mn m n nm kn nk kn k n

m k k m m k mk m k nk m k k n

n k m

        

 

 



             

 

 



        

           

           

  ) ( | )]}.k n k k m 

 

 (2.68) 

 Formula (2.59) is well known, e.g. in [13, 14]. Particular cases of some of 

the general expressions above can be found in the quantum chemistry literature, 
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e.g. formula (2.60) for ,k k m m    and (2.62) for , ,k k m m n n      in [13], 

formula (2.63) for m m   in [13] and  for m m    in  [14],  formula (2.64) for 

m m   in [14]. 

 

 

 

2.6.3 The Brillouin Theorem and its Analog for Radicals 

 

 The orthonormal orbitals for which the first variation of energy 0E  of the 

vacuum state 
0   vanishes according to [15] satisfy the operator equation   

 
1 1

ˆ ˆ ˆ ˆ 0FP PF  , (2.69) 

where F̂  is the Fock operator, and 
1P̂  is the Fock – Dirac density operator 

 1

1

ˆ
Fn

l l

l

P  


 . (2.70)  

Calculating the matrix element of (2.69) over the orbitals k  and m  and 

using projection properties of the operator 
1P̂  one obtains from (2.57) if initial 

orbitals satisfy equation (2.69) that 

 

 1

0 1
ˆ 0H   .  (2.71) 

  

The conditions used in deriving (2.71) are more comprehensive than the 

conditions of the well known Brillouin theorem [16, 17]. The content of this 

theorem is expressed by (2.71) if configurations are built on the SCF 

eigenfunctions of the operator F̂ .  

In the case of a radical the orbitals for which the first variation of the 

energy of the configuration ( , )m  vanishes satisfy the operator equation [18] 

 

 
1 1 1 1 2 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0FP PF F P P F    ,  (2.72) 

 

where 
1P̂  is defined by (2.70), 

2P̂  is a projection operator for the orbital m , and 

the operators 
1F̂  and 

2F̂  for a semi-open shell are determined as   
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1 0 0

1ˆ ˆ ˆ ˆ
2

F F J K   , (2.73) 

 

 
2 0 0

1ˆ ˆ ˆ ˆ
2

F F J K    (2.74) 

 

with the Fock operator F̂  built on the vacuum orbitals, and Coulomb 
0Ĵ  and 

exchange 
0K̂   operators are built on the orbital m . 

Let us write down the expressions for the matrix elements (2.59) for 

m m   and (2.63), (2.65) for ,m m n m    

 

 2 2

1 1
ˆ

mmH F 
   , (2.75) 

 

 2 2

1 2 0
ˆ ˆ( )km kmH F J    , (2.76) 

 

 2 2

1 4 0 0

1ˆ ˆ ˆ2[ ( ) ( ) ]
2

kn kn knH F J K     , (2.77) 

 

where the last two matrix elements are expressed over the matrix elements of the 

operators 
0Ĵ  and 

0K̂  on the orbitals i . 

 Using projection properties of the operators 
1P̂  and

2P̂   

 

  
1 1 1 1
ˆ ˆ ˆ ˆ, 0k k m m nP P P P        , (2.78a) 

 

  
2 2 2 2
ˆ ˆ ˆ ˆ, 0m m k m nP P P P         (2.78b) 

 

from equation (2.72) one obtains   

 

 

2

1 2

1

ˆ 0,

ˆ ˆ 0,

ˆ 0.

m m

k m

k n

F

F F

F

 

 

 

 

 



 (2.79) 
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Substituting 
1F̂  and 

2F̂  according (2.73) to (2.79) and using the identity  

 

  
0 0

ˆ ˆ
m mJ K    (2.80) 

 

we see that relations (2.79) express that the right sides  of the equations (2.75) – 

(2.77) are zero.  

 Thus, the following statement was proved. If the configurations are built on 

an orthonormal orbital set for which the first variation of an energy of the 

configuration ( , )m  vanishes, then the Hamiltonian matrix elements between 

this configuration  and any of the configurations  ( , )m  with m m  , 

configuration ( , )k mm , and of the vector (2.55b) of the configuration ( , )k mn  with 

n m  are equal to zero. 

 Generally the equation (2.72) has many solutions but the statement proved 

so far is valid for any particular solution irrespective of the procedure of its 

derivation. Thus, this statement remains valid for the SCF orbitals obtained by 

the Roothaan operator [19] or by the use of the one-electron Hamiltonian for one 

open shell [18]. 

 

2.6.4 Calculation of Certain One-particle Properties 

 

 The wave function for the state   in the CI method is expanded over the 

basis vectors  

  

 
q q

q

X     (2.81) 

 

and the MO i  used to construct the primitive vectors are usually expressed as 

linear combination of orthonormal AO 

 

 
i iC 



   . (2.82) 

 

 Observable physical properties are determined by the matrix elements 

mostly of the one-particle operator Q̂     
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 *ˆ ˆ
p q p q

pq

Q X X Q     . (2.83) 

 

Thus, one first needs to calculate the matrix elements of Q̂  on the basis 

vectors. 

 If Q̂  is a spin-free operator, analytical expressions for the matrix elements 

ˆ
p qQ   for the configurations considered so far are obtained directly from the 

Hamiltonian matrix elements (2.57) – (2.68) by ignoring two-electron terms and 

changing ijF  to ijQ  and 0F  to an average value 0Q  of the operator Q̂  in the 

vacuum state. In particular, for the calculation of the electronic density  on  

atoms P

  and bond orders P

  in a state   as  well as transition electronic 

density on atoms P

  corresponding to a transition from state   to state   one 

must take *

i jC C   and correspondingly *

i j ijC C P    instead of ijQ  and 0Q  must be 

put equal to 

 

 *

1

2
Fn

i i

i

C C 



 .  

 

 In the zero differential overlap approximation a component of the transition 

moment are determined through corresponding atomic coordinates and transition 

density, for example:   

 

 P 

  



  . (2.84) 

  

When calculating the spin density 

  in a state   one meets with an 

operator Q̂  which according to formula (2.12) depends on the spin variables 

being diagonal over them. We give final expressions for the matrix elements 

needed to calculate the spin density denoting 

 

 *

i j ijC C P   ,  (2.85) 
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namely: 

                                             3 3

1 1
ˆ2 ,z kk m m mm kkS P P    

     (2.86) 

 

                                                    2 2

1 1
ˆ2 z m mS P 

    (2.87) 

 

                                                  2 2

2 2
ˆ2 z mm kkS P  

     (2.88) 

2 2

3 3

1ˆ2 [ (4 2 ) (4 5 )],
6

z kk mm n n nn m m mn m n nm n m kk mm nn nn nmS P P P P P                     
          

(2.89) 

          2 2

4 4

1ˆ2 [ (2 ) ( )],
2

z kk nn m m mn m n nm n m kk mm nn mn nmS P P P P                  
        (2.90) 

 

                                                2 2

1 2
ˆ2 z mm kmS P 

      (2.91) 

 

                                      2 2

1 3

1ˆ2 (2 )
6

z mm kn nm kmS P P  
      (2.92) 

 

                                                 2 2

1 4

1ˆ2
2

z nm kmS P 
     (2.93) 

 

                            2 2

2 3

1ˆ2 [ ( ) 3 ],
6

z kk mm m n nm m m kk mm nmS P P P           
             (2.94) 

 

                            2 2

2 4

1ˆ2 [ ( ) ],
2

z kk mm m n nm m m kk mm nmS P P P           
       (2.95) 

 

                2 2

3 4

1ˆ2 [ ( 3 ) (2 )].
12

z kk mn m n nm n m kk mm nn mn nmS P P P               
        (2.96) 

 

 The expression for 3 

  derived in [9 , 20] by the determinantal method is 

obtained from (2.86) in a way described above. 

 

2.7 Exact Solution for a Seven-electron System Using Full CI Method 
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 General approach to calculation of the CI matrix elements (2.5 above) was 

also used to perform full CI computation which gives an exact solution for a 

model Hamiltonian used. The full CI calculation was done for π-electronic 

model of the benzyl radical containing seven π-electrons. The reason why just 

the benzyl radical was chosen to perform such a labor-consuming full CI 

computation is connected with a still not-resolved discrepancy between 

computed π-spin density distribution in benzyl radical and its ESR proton 

splitting well studied experimentally.  

        This being the situation when it seems desirable to examine the different 

characteristics of the ground state of benzyl radical as the approximation for the 

wave function is improved and approaches an exact eigenfunction of a given π-

electronic Hamiltonian. We focus in this review only on technique how the 

restricted up to the full CI calculations were practically performed. 

 For a π-electronic shell of benzyl radical we used the traditional model 

based on the zero differential overlap approximation. Introducing creation â

  

and annihilation â  operators for an electron in atomic state   with the spin   

and using the second quantization representation, the corresponding 

Hamiltonian is 

 

 
1ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2

coreH h a a a a a a       

 

  

 



   , (2.97) 

 

where coreh  are so called core integrals, and  – electron repulsion integrals of 

π-electronic theory. Indexes   and   run over all AOs (2.in our case from 1 to 

7), and spin indexes   and   take values +1/2 or –1/2. Regular model of the 

benzyl radical with standard CC bond length was used. Full CI was also 

performed for ―equillibrium‖ model of the benzyl radical.  

Now it is proper for computations to pass from AOs to MOs. Formally, 

this can be done by the introduction of creation â

  and annihilation â  

operators for electrons in molecular states through the canonical transformation 

 

 ˆˆ
i i

i

a C A   , * ˆˆ
i i

i

a C A  

  ,  (2.98) 
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where iC  are expansion coefficients of MO i  over AOs. It is necessary that 

these expansion coefficients form a unitary matrix. Thus, the MOs will be 

orthonormalized and the commutation properties of the operators ˆ
iA

  and ˆ
iA

 

will have the standard form. Substituting (2.98) into (2.97) one obtains 

 

  
1ˆ ˆ ˆ ˆ ˆ ˆˆ ( | )
2

ij i j i j l k

ij ijkl

H h A A ij kl A A A A     

 

  

 



   , (2.99) 

where 

  
* core

ij i jh C C h  



 , (2.100) 

 

  
* *( | ) i k j lij kl C C C C    



 . (2.101) 

 

 In our computations the Hamiltonian (2.99) was taken as initial one. For 

the MOs entering (2.100) and (2.101) we have chosen those which minimize the 

energy of the ground configuration of benzyl. The corresponding orbital 

coefficients were computed by the SCF method for an open shell configuration 

[9]. Choice of these orbitals seems to be most natural providing conservation of 

the alternant properties for the full as well as for certain truncated 

configurational sets. These orbitals possess proper symmetry and some of the CI 

matrix elements are zero [12] due to relations analogous to Brilloiun‘s theorem. 

It should be noted that the results obtained with full CI are invariant to the 

choice of the basis orbitals [5]. 

 

2.7.1 Configurations and Energy Results 
 

 In the framework of the CI method the wave function is improved simply 

by extension of the configurational set. With a full set of configurations, the 

number of which is finite in our case, one obtains an exact eigenfunction for a 

given model Hamiltonian. The theory of the CI method  is well known [5]. The 

wave function is expanded in Slater determinants. The expansion coefficients 

are determined by diagonalization of the CI matrix. Its order can be lowered 

essentially if instead of single Slater determinants their orthonormal linear 

combinations of proper symmetry and multiplicity are used. We utilized this 

general scheme using the second quantization formalism described above 
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successively, which is equivalent to the traditional determinantal approach (see 

e.g. Appendix below). The ground state configuration of benzyl has symmetry 
2

2B . In the π-electron approximation there are 212 excited configurations of the 

same symmetry. The distribution of these with the multiplicity of the excitation 

and with the number of unpaired electrons is given in Table 2.1. 

Table 2.1  

Number of excited configurations for the benzyl radical  

depending on their type with corresponding number of the basis vectors  

(in parenthesis). 

 

Number of 

unpaired 

electrons 

Multiplicity of excitation 

1 2 3 4 5 6 

1 4(2.4) 21(2.21) 24(2.24) 33(2.33) 12(2.12) 5(2.5) 

3 5(2.10) 14(2.28) 36(2.72) 22(2.44) 13(2.26) – 

5 – 5(2.25) 8(2.40) 9(2.45) – – 

7 – – 1(2.14) – – – 

Σ 9(2.14) 40(2.74) 69(2.150) 64(2.122) 25(2.38) 5(2.5) 

 

 For each configuration one can form one or more orthonormal doublet 

basis vectors corresponding to a positive projection of the spin. Construction of 

such single vector for the configuration 2 2 2 1( ) ( ) ( ) ( )i j k l  is simple. This vector 

corresponds to a single Slater determinant and is written as   

 

 0i i j j k k lA A A A A A A      

       , (2.102) 

 

where 0  is the vacuum state, and indices   and   denote values +1/2 and –1/2 

of the spin variable  . 

The configuration 2 2 1 1 1( ) ( ) ( ) ( ) ( )i j k l m with three unpaired electrons gives 

rise to three vectors of type (2.102) with 1 / 2SM   :   
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0

0

0

k l m

i i j j k l m

k l m

A A A

A A A A A A A

A A A

  

      

  

  

      

  




 



. (2.103) 

 

A linear combination of these configurations is written symbolically as 

 

 1 2 3C C C    . (2.104) 

 

Two sets of coefficients (1 / 6, 1 / 6, 2 / 6)  and (1 / 2, 1 / 2, 0)  give the two 

orthonormal doublet basis vectors. 

 For configurations with five and seven unpaired electrons the number of 

different spin-configurations with 1 / 2SM    is equal to 10 and 35, and the 

number of possible mutually orthogonal basis vectors is equal to 5 and 14. The 

corresponding sets of coefficients in the linear combination of type (2.104) 

obtained by the VB method with subsequent orthogonalization are collected in 

Table 2.2. For convenience of listing these vectors are not normalized. 

 

 

 

 

Table 2.2  

Expansion coefficients of the basis vectors 

with five unpaired electrons over spin-configurations. 

Spin-

configuration 

Basis vectors 

αααββ 0 0 –1 –1 1 

ααβαβ 0 0 1 1 1 

αβααβ 2 0 0 0 –1 

βαααβ –2 0 0 0 –1 

ααββα 0 0 –1 1 –1 

αβαβα –1 1 1 0 0 

βααβα 1 –1 1 0 0 

αββαα –1 –1 0 –1 0 
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βαβαα 1 1 0 –1 0 

ββααα 0 0 –1 1 1 

 

 Expansion coefficients of all 35 basis vectors with seven unpaired electrons 

over spin-configurations can be found in [21]. 

 The number of possible doublet basis vectors corresponding to different 

types of configurations is indicated in parenthesis in Table 1.  

        The total number of basis vectors related to singly excited configurations of 

symmetry 2

2B  is equal to 14, doubly – to 74, triply – to 150, quadruply – to 122, 

quintuply – to 38, and sextuply – to 5. 

 Computations were performed with seven sets of basis vectors – G, I, II, 

III, IV, V, and F. Set G represents only the ground state configuration of benzyl. 

Each of the other sets was extended compared with previous one at the expense 

of the basis vectors corresponding to configurations of the next higher order of 

excitation.  

          Thus the size of the configurational sets used was equal to 1, 15, 89, 239, 

361, and 404 correspondingly. Set F with 404 configurations corresponds to the 

wave function with full CI.  

 In order to perform CI computations one usually finds analytical 

expressions for matrix elements of the Hamiltonian over the basis vectors of 

different types. In our case this traditional way is not acceptable for most of the 

expressions to be programmed are cumbersome and the number of them is too 

large. 

 The derivation of the analytical expressions for the Hamiltonian matrix 

elements were rejected and entrusted this job to a computer at an early stage 

(standard procedure).  

         To do this it was necessary to program simple rules for calculation of the 

matrix elements in the second quantization representation which follow from 

Wick‘s theorems and are equally good for configurations of arbitrary 

complexity. Necessary rules are given in p.5 above.  

 Occupation numbers of one-particle states for electrons are equal to 0 or 1. 

Therefore the computer code is ideally suitable to record vectors of type (2.102). 

The first eigenvalues and corresponding eigenvectors of the CI matrix were 

computed by an algorithm proposed by Nesbet.  
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 The energy of the ground state of the benzyl radical computed  with 

different configurational sets is given in Table 2.3. 

 

 

 

 

Table 2.3  

Change in energy E of the ground state 

of the benzyl radical and of the overlap integrals S  

between its exact and approximate wave functions  

as the configurational set is extending. 

 

Configurational set E, eV S 

G 0.929722              0.945313 

I 0.760009              0.966577 

II 0.058437              0.997981 

III 0.021089              0.999471 

IV 0.000394              0.999994 

V 0.000082               0.999999 

F 0* 1 

                * Energy of the benzyl radical computed with full CI 

                  was taken as zero and for parametrical Hamiltonian 

                  (2.97) was equal to –211.756817 eV. 

 

 The difference between the energy corresponding to full CI and the energy 

obtained in the single-configuration approximation will be called the correlation 

energy for a given model Hamiltonian.  

 It is seen from Table 2.3 that the correlation energy in our case is equal to –

0.929722 eV. With the singly excited configurations only 18% of this energy is 

taken into account.  

 Extension of the orbitals basis to include doubly excited configurations 

leads to an account of almost all the correlation energy, namely 94%, though 

higher order corrections should be taken into account too. 

 We do not give many other demonstrative results which came out of these 
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computations [21].  

 Our purpose was just to illustrate the second quantization technique 

described above to perform large scale CI calculations. Especially it is very 

effective in a case of the multiatomic molecular systems. More detailed 

information including computer program in ALGOL may be found in [23].  

 

 2.8 Appendix. Determinantal Method to Derive the Electron Density – 

Bond Order Matrix and the Spin Density with an Account of All Singly and 

Doubly Excited Configurations for Molecular States 

 

 The inclusion of more than singly excited configurations leads to a closer 

description of reactivity, geometry, and other properties of molecules in the 

ground and excited states. The knowledge of the distribution of the electron 

density P , the spin density  , and the bond orders P  computed with an 

account of doubly excited configurations is important. 

 It is not difficult to find in quantum chemistry literature computations when 

wrong or better to say non-complete formulae for electron distributions 

mentioned above are used.  

 For example, formula for 1P  used in [24] is valid only for the case of 

mixing of some particular doubly excited configurations, namely those of the 

types 1

i k
i k



  and 1

i k
j l



 , and of the ground state configuration 1

0 . Here the 

occupied MO‘s of the ground state of a molecule are designated by i and j, and 

the unoccupied – by k and l. The single-configurational wave function of the 

ground state of a molecule with 2n electrons is 

 

  1

0 (11... ... ... )i i j j nn   

 

or for the brevity just   
1

0 | ... |i i j j  . 

 

An identical wrong formula was erroneously used in [25 – 27] where singly 

and/or doubly excited configurations of arbitrary types have been included. The 

correct formulae for 1,3P  and   with the inclusion of only singly excited 
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configurations can be found in [9] where also is mentioned that the use of the 

widely-spread simple formula [24 – 27] for mixing of configurations of arbitrary 

types leads to an even qualitatively incorrect electron density distribution, 

especially for the states of different multiplicity.  

 This appendix summarizes the derivation of the general expressions for 
1,3P  of the ground and excited singlet and triplet molecular states and for   of 

the triplet states by the determinantal method in the frame of the CI method 

including all singly and all doubly excited configurations  [20]. 

 

2.8.1 The Wave Functions 

 

The multi-configurational wave functions for the singlet and triplet states are 

 
1 1 1 1 1 1 1 1 1

0 0

1 1 1 1 1 1 ,

i k i k i k i k i k i k
i k i k j k j k

i k i k i k i k i k i k
i l i l j l j l j l j l

X X X X

X X X

     
   

     
     

         

        

  

  
 

 

3 3 3 3 3 3 3

3 3 3 3 3 3 ,

i k i k i k i k i k i k
j k j k i l i l

i k i k i k i k i k i k
j l j l j l j l j l j l

X X X

X X X

     
   

     
     

       

          

  

  
 

 

where here and in the following equations the summation indexes over MO‘s are 

omitted supposing that they run independently over all possible values, and 

 

1 1 1

1 1

1

3

1 1
(| | | |), | |, (| | | |),

2 2

1 1
(| | | |), (| | | | | | | |),

22

1
(| | | | | | | | 2 | | 2 | |),

12

i k i k i k
i k j k

i k i k
i l j l

i k
j l

i

ik j j i k j j kk j j ik j k i k jk

k l j j lk j j ik j l i k jl ik j l i k jl

ik j l i k jl ik j l i k jl ik jl i k j l

  
 

 
 






       

       

      

 3 3 3

3 3

1
| |, | |, | |, (| | | |),

2

1 1
(| | | | 2 | |), (| | | | | | 3 | |).

6 12

k i k i k i k
j k i l j l

i k i k
j l j l

ik j j ik jk kl j j i k jl ik jl

i k jl ik jl ik j l i k jl ik jl ik j l ik jl

  
  

 
 

       

         

 

 



 67 

2.8.2 The Expectation Value of a One-electron Operator 

 

 Let the one-electron operator be given   

 

 ˆ ˆ ( )
t

Q Q t . 

There should be found its average values 

 

 
1

1 1ˆ ˆQ Q    and 
3

3 3ˆ ˆQ Q   . 

 

 In order to calculate the matrix elements of Q̂  on the determinantal 

functions contained in 1  and 3  one may use the known expansion [5] 

 

  ˆ ˆ ( | ),r s

rs

U Q V u Q v D r s  

where   

 1 2 3( ... ),NU u u u u  

 

 1 2 3( ... ),NV v v v v   

 

and ( | )D r s  is a minor of the determinant   

 

 |D U V , 

received by crossing in D  the column r   and the row s . 

 Tedious calculations lead to the following expressions for 
1

Q̂  through the 

matrix elements of Q̂  in the MO representation and for 
3

Q̂  in the spin-MO 

representations: 
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2.8.3 The Electron Density – Bond Order Matrix and the Spin Density 
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Expanding the MOs in linear combination of AOs 

 

    
r rC 



   (A2) 

 

one can introduce the matrix elements 

 

 ˆQ Q      

 

and obtains an expression for 
1

Q̂  in terms of the expansion coefficients rC .  

 

Comparing it with the known expression  
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one finally obtains 
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In order to calculate   let put in (A1) 

 

ˆ ˆ ( )z

t

Q S t  

Taking into account that 
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and using the AO basis one obtains after some manipulations 
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 The expression (A1) also permits to obtain the formula for 3P . Let us 

carry out the summation in (A1) over the spin variables taking the normalization 

condition of 3  into account. Using the AO representation and comparing the 

expression derived so far with (A3) one finally obtains 
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The expressions (A4) – (A6) immediately lead to the formulae [9]   
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and 

  
3 3 ( )i k i k k k ii i i kkX X C C C C              , (A8) 

 

which are valid for the case of including only singly excited configurations. 

 The formula for 1P erroneously used in [24 – 26] may be obtained from 

(A7) if the summation in the latter is restricted by the condition i i  and k k . 

 The validity of the expression for 1P  used in [24] follows from (A4) when 

accounting only for some particular configurations, namely those of the type 
1

0 , 1

i k
i k



 , and 1

i k
j l



  which have been included by the authors. 

2.9 Conclusions 

  

The second quantization method has been intensively developed and is widely 

used for treating many-particle problems. Kouba and Ohrn [28], for example, 

have considered and solved some of the problems which we discuss in a 

different way, namely a translation was made of spin projection methods into 

the language of second quantization. This leads to a new formula for the Sanibel 

coefficients and expressions convenient to use for automatic calculation of spin 

projections.  

 We discussed in this review only one aspect of the second quantization 

method, namely the construction of the multi-configurational wave functions. 

Our approach is alternative to the usual determinantal method but offers some 

advantages. The use of the second quantization representation allows the hole 

which is introduced naturally and which is a mathematical description of the 

interpretation of the excited configurations in terms of the particles and holes 

against the vacuum state.  

 The importance of this interpretation is obvious, particularly if the vacuum 

state is chosen as the Hartree – Fock state. Then the terms with the N-products in 

the Hamiltinian (2.34) will describe the correlation of the electrons in an explicit 

form. 
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 Introduction of the hole formalism allows the expressions for the CI matrix 

elements in a form when the integrals of interaction with the vacuum particles 

are already summed up, and the vacuum  state plays the role of an external field. 

The use of these expressions reduces the number of summations to a minimum 

which is essential when the number of particles is large. Despite the  relative 

complexity of the second quantization method it reduces the procedure for the 

calculations of the matrix elements to a simple logical scheme which can be 

easily programmed.  

 The corresponding algorithm is universal for all varieties of the matrix 

elements met in actual computations and reduces to a few simple cases.  

 Such an algorithm which is based on this logical scheme for CI method was 

developed.  

 The corresponding program CI-2 is given in details in [23]. We have used 

this program repeatedly, in particularly for computing electronic states of benzyl 

radical [29], and glycine and tyrosine molecules and their neutral and charged 

radicals [30]. The same logical scheme, but without use of the hole formalism, 

was incorporated in program CI-3 to perform a complete CI for the benzyl 

radical [21]. 
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Chapter 3. 

RELATIVISTIC MANY-BODY PERTURBATION THEORY 

APPROACH TO CALCULATING ENERGY LEVELS, HYPERFINE 

STRUCTURE CONSTANTS FOR HEAVY ATOMS AND IONS  

 

3.1 Introduction 

 

          In this chapter the relativistic calculation of the spectra hyperfine 

structure parameters for heavy atoms and multicharged ions with account of 

relativistic, correlation, nuclear, QED effects is carried out (the Superatom 

package) [31-38]. Our calculation scheme is based on gauge-invariant QED 

perturbation theory with using the optimized one-quasiparticle  representation at 

first in the theory of the hyperfine structure for relativistic systems [2]. It is 

carried out calculating the energies and constants of the hyperfine structure, 

deriviatives of the one-electron characteristics on nuclear radius,  nuclear 

electric quadrupole, magnetic dipole moments Q for atom of  hydrogen 
1
H (test 

calculation), superheavy H-like ion with nuclear charge Z=170,  Li-like 

multicharged ions with Z=20-100, neutral atoms of  
235

U, 
201

Hg and 
227

Ra are 

defined.  

In last years a studying the spectra of heavy and superheavy elements 
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atoms and ions is of a great interest for further development as atomic and 

nuclear theories (c.f.[31-38]).  

Theoretical methods used to calculate the spectroscopic characteristics of 

heavy and superheavy ions may be divided into three main groups: a) the multi-

configuration Hartree-Fock method, in which relativistic effects are taken into 

account in the Pauli approximation, gives a rather rough approximation, which  

makes it possible to get only a qualitative idea on the spectra of heavy ions. b) 

The multi-configuration Dirac-Fock (MCDF) approximation (the Desclaux 

program, Dirac package) [3] is, within the last few years, the most reliable 

version of calculation for multielectron systems with a large nuclear charge; in 

these calculations one- and two-particle relativistic effects are taken into account 

practically precisely.  

The calculation program of Desclaux is compiled with proper account of 

the finiteness of the nucleus size; however, a detailed description of the method 

of their investigation of the role of the nucleus size is lacking. In the region of 

small Z (Z is a charge of the nucleus)  the calculation error in the MCDF 

approximation is connected mainly with incomplete inclusion of the correlation 

and exchange effects which are only weakly dependent on Z; c)  

In the study of lower states for ions with Z40 an expansion into double 

series of the PT on the parameters 1/Z, Z ( is the fine structure constant) 

turned out to be quite useful. It permits evaluation of relative contributions of 

the different expansion terms: non-relativistic, relativistic, QED contributions as 

the functions of Z.   

Nevertheless,  the serious problems in calculation of the heavy elements 

spectra are connected with developing new, high exact methods of account for 

the QED effects, in particular, the Lamb shift (LS), self-energy (SE) part of the 

Lamb shift, vacuum polarization (VP) contribution, correction on the nuclear 

finite size for superheavy elements and its account for different spectral 

properties of these systems, including calculating the energies and constants of 

the hyperfine structure, deriviatives of the one-electron characteristics on 

nuclear radius,  nuclear electric quadrupole, magnetic dipole moments etc  

(c.f.[2,31-38]).  

     In present paper a new, highly exact, ab initio approach to relativistic 

calculation of the spectra for multi-electron superheavy ions with an account of 

relativistic, correlation, nuclear, radiative effects is presented.  The method is  
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based on the quantum electrodynamical (QED) perturbation theory (PT). 

Relativistic calculation of the spectra hyperfine structure parameters for heavy 

atoms and multicharged ions with account of relativistic, correlation, nuclear, 

QED effects is carried out (the Superatom and Dirac packages (DP)  are used; 

the DP using in a progress).  

          Our calculation scheme is based on gauge-invariant QED perturbation 

theory and and generelized relativistic dynamical effective field nuclear model 

with using the optimized one-quasiparticle  representation at first in the theory 

of the hyperfine structure for relativistic systems [2].  

          The wave function zeroth basis is found from the Dirac equation with 

potential, which includes the core ab initio potential, the electric and 

polarization potentials of a nucleus (the gaussian form of charge distribution in 

the nucleus is considered) [31-38]. The correlation corrections of the high orders 

are taken into account within the Green functions method (with the use of the 

Feynman diagram‘s technique).  

          There have taken into account all correlation corrections of the second 

order and dominated classes of the higher orders diagrams (electrons screening, 

particle-hole interaction, mass operator iterations) [11-18]. The magnetic inter-

electron interaction is accounted in the lowest (on   parameter), the LS 

polarization part - in the Uehling-Serber approximation, self-energy part of the 

LS is accounted effectively within the Ivanov-Ivanova non-perturbative 

procedure [11].  

          Generelized relativistic dynamical effective field nuclear model is 

presented in [38] (see also refs.[2]). The energies and constants of the hyperfine 

structure, deriviatives of the one-electron characteristics on nuclear radius,  

nuclear electric quadrupole, magnetic dipole moments Q for atom of  hydrogen 
1
H (test calculation), superheavy H-like ion with nuclear charge Z=170,  Li-like 

multicharged ions with Z=20-100, neutral atoms of  
235

U, 
201

Hg and 
227

Ra are 

calculated.  

 

3.2 Relativistic perturbation theory method for calculation of heavy and 

superheavy ions 

 

          Let us describe the key moments of our approach to relativistic calculation 

of the spectra for multi-electron superheavy ions with an account of relativistic, 
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correlation, nuclear, radiative effects (more details can be found in ref.[31-38]). 

 

 

3.2.1 Definition of the basis of relativistic orbitals 

 

   One-particle wave functions are  found from solution of the relativistic Dirac 

equation, which can be written in the central field in a two-component form: 
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Here we put the fine structure constant  =1 . The moment number 
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     At large   the radial functions F and G vary rapidly at the origin of co-

ordinates: 
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     This involves difficulties in numerical integration of the equations in the 

region r0. To prevent the integration step becoming too small it is convenient 

to turn to new functions isolating the main power dependence: 




11
, GrgFrf . The Dirac equation for F and G components are 

transformed as: 
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Here the Coulomb units (C.u.) are used; 1 C.u. of  length = 1 a.u.Z; 1 C.u. 

of energy = 1 a.u. Z 2 . In Coulomb units the atomic characteristics vary weakly 

with Z. nE  is one-electron energy without the rest energy, the system of 

equations (4) has two fundamental, solutions. We are interested in the solution 

regular at  r0.  

The boundary values of the correct solution are found by the first term s of 

the expansion into the Taylor series: 

 

             1;120   fZrEVg n  at  0  

             

                                     1;20 22   gZZEVf n  at  0                    

 (3.5) 

          The condition 0, gf  at r   determines the quantified energies of the 

state  E n . At correctly determined energy E n  of  the asymptotic  f  and g at 

r   are: 

 

                                                      f  ,g~   nrexp                                   (3.6) 

 

where 
  nEn 21   is the  effective main quantum number.  

          The equations (4) were solved by the Runge-Kutter method. The initial 

integration point 6
0 10Rr  , where R is the nucleus radius, the end of the 

integration interval is determined as  

 nrk 30 . 

 

3.3 Nuclear potential 

 

Earlier we calculated some characteristics of hydrogen-like ions with the 

nucleus in the form of a uniformly charged sphere; analogous calculations by 

means of an improved model were also made; Here the smooth Gaussian 

function of the charge distribution in the nucleus is used. Using the smooth 
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distribution function (instead of the discontinuous one) simplifies the calculation 

procedure and permits flexible simulation of the real distribution of the charge in 

the nucleus.  

As in ref. [32] we set the charge distribution in the nucleus  r  by the 

Gaussian function. With regard to normalization we have: 
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were RR ,4 2  is the effective nucleus radius.  

The following simple dependence of R on Z assumed: 
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Such definition of R is rather conventional.  

We assume it as some zeroth approximation. Further the derivatives of 

various characteristics on R are calculated. They describe the interaction of the 

nucleus with outer electron; this permits recalculation of results, when R varies 

within reasonable limits.  

The Coulomb potential for the spherically symmetric charge density 

 Rr  is: 
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    It is determined by the following system of differential equations: 
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3.4 General Scheme of calculation for a three-electron system 

 

     Consider the Dirac-Fock type equations for a three-electron system nljs21 . 

Formally they fall into one-electron Dirac equations for the orbitals s1 1s and 

nlj  with the potential: 

 

                                      RrVrVnljrVsrVrV ex  12                            (3.12) 

 

 RrV  includes the electrical and the polarization potentials of the nucleus; the 

components of the Hartree potential: 

 

 

                                                    rrirrd
Z

irV

  /

1
                                  (3.13) 

 

 ir  is the distribution of the electron density in the state | i >, exV is the 

exchange inter-electron interaction. The main exchange effect will be taken into 

account if in the equation for the s1 orbital we assume 

 

                                              nljrVsrVrV  1                                        (3.14) 

 

and in the equation for the nlj  orbital 

 

                                                   srVrV 12                                               (3.15) 
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The rest of the exchange and correlation effects will be taken into account 

in the first two orders of the PT by the total inter-electron interaction [13-17].  

 

          Refinement resulting from second iteration (by evaluations) does not 

exceed correlation corrections of the higher orders omitted in the present 

calculation. The relativistic potential of core (the "screening" potential)  

 

 

                                                        scrVsrV 12 1   

 

has correct asymptotic at zero and in the infinity; at 0  it changes to an 

appropriate potential constructed on the basis of non-relativistic hydrogen-like 

functions.   

 

3.5 Calculation of the self-energy part of the Lamb shift and vacuum 

polarization correction 

 

Procedure for an account of the radiative QED corrections is in details 

given in the refs. [12,16,17]. Rergartding the vacuum polariation effect let us 

note that this effect is usually taken into account in the first PT theory order by 

means of the Uehling potential.  This potential is usually written as follows 

(c.f.[1,11]): 

 

      



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
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






1
2

2
2 ,

3
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gC

rt

t
tZrtdt

r
rU      (3.16) 

where  
Z

r
g


 . In our calculation we usually use more exact approach. The  

Uehling potential,  determined as a quadrature (16) may be approximated with 

high precision by a simple analytical function. The use of new approximation of 

the Uehling potential permits one to decrease the calculation errors for this term 

down to 0.5 – 1%.  

Besides, using such  a  simple analytical function form for approximating 

the Uehling potential allows its easy  inclusion into the general system of 

differential equations. This system   includes also the Dirac equations and the 
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equations for  matrix elements.  

A method for calculation of the self-energy part of the Lamb shift is based 

on an idea by Ivanov-Ivanova (c.f.[32,37]). In an atomic system the radiative 

shift and the relativistic part of the energy are, in. principle, determined by one 

and the same physical field.  

It may be supposed that there exists some universal function that connects 

the self -energy correction and the relativistic energy. The self-energy correction 

for the states of a hydrogen-like ion was presented by Mohr [1] as: 

 

                                  nljZHF
n

Z
nljZHESE ,027148.0,

3

4

                (3.17) 

 

The values of  F are given at  .2,2,2,1,11010 2321 ppssnljZ    

These results are modified here for the states 1s
2
 nlj of Li-like ions. It is 

supposed that for any ion with nlj electron over the core of closed shells the 

sought value may be presented in the form: 

 

                                    1
3

4

,027148.0, 


 cmnljf
n

nljZESE               (3.18) 

 

The parameter   RR EE ,41  is the relativistic part of the bounding energy of the 

outer electron; the universal function  nljf ,  does not depend on the 

composition of the closed shells and the actual potential of the nucleus. The 

procedure of generalization for a case of Li-like ions with the finite nucleus 

consists of the following steps [17]:  

1). Calculation of the values RE  and   for the states nlj of H-like ions with the 

point nucleus (in accordance with the Zommerfeld formula);   

2). Construction of an approximating function  nljf ,  by the found reference Z 

and the appropriate  nljZHF ,  [1,11];  

3). Calculation of RE  and   for the states nlj of Li-like ions with the finite 

nucleus;  

4). Calculation of SEE  for the sought states by the formula (18).   

The energies of the states of Li-like ions were calculated twice: with a 
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conventional constant of the fine structure 1371  and with .1000~  The 

results of latter calculations were considered as non-relativistic. This permitted 

isolation of RE  and  . A detailed evaluation of their accuracy may be made 

only after a complete calculation of  nljZLiEn
SE

, . It may be stated that the above 

extrapolation method is more justified than using the widely spread expansions 

by the parameter Z .  

 

 

3.6 Definition of the hyperfine structure parameters 

 

Energies of the quadruple (Wq) and magnetic dipole (W ) interactions, which 

define a hyperfine structure, are calculated as follows [2,38]: 

 

Wq=[+C(C+1)]B, 

 

W=0,5 AC, 

 

=-(4/3)(4-1)(I+1)/[i(I-1)(2I-1)], 

  

                                           C=F(F+1)-J(J+1)-I(I+1).                                  (3.19) 

 

Here I is a spin of nucleus, F is a full momentum of system, J is a full electron 

momentum. Constants of the hyperfine splitting are expressed through the 

standard radial integrals:  

 

A={[(4,32587)10
-4

Z
2gI]/(42

-1)}(RA)-2, 

(3.20) 

B={7.2878 10
-7

 Z
3
Q/[(42

-1)I(I-1)} (RA)-3, 

 

Here gI  is the Lande factor, Q is a quadruple momentum of nucleus (in Barn); 

radial integrals are defined as follows: 

 

(RA)-2,= 



0

22 ),,/1()()( RrUrGrFdrr  
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                                         (RA)-3,=  


0

2222 ),,/1()()([ RrUrGrFdrr                 (3.21) 

 

and calculated in the Coulomb units (=3,57 10
20

Z
2
m

-2
; = 6,174 10

30
Z

3
m

-3
 for 

valuables of the corresponding dimension).  

The radial parts F and G of two components of the Dirac function for 

electron, which moves in the potential V(r,R)+U(r,R), are determined by 

solution of the Dirac equations (see above; system (1)). For calculation of 

potentials of the hyperfine interaction U(1/r
n
,R), wone could use the method of 

differential equations by Ivanova-Ivanov [32,37].  

The electric quadrupole spectroscopic HFS  constant B of an atomic state 

related to the electric field gradient q and to electric quadrupole moment eQ of 

the nucleus as:  

 

B=eqQ/h. 

So, to obtain the corresponding value of Q one  must combine the HFS 

constants data with the electric field gradient obtained in our approach  from the 

QED PT calculation. 

The details of calculation are presented in [11,14, 17,18]. 

 

3.7  Results of calculation and conclusion 

 

3.7.1 Atom of  hydrogen and superheavy H-like ion with Z=170 

 

We have carried out the test calculation of the hyperdine structure 

parameters (plus deriviatives of the energy contribution on nuclear radius) for 

atom of hydrogen 
1
H and superheavy H-like ion with nuclear charge Z=170. For 

hydrohen atom there are available sufficiently eact data for hyperfine splitting 

energiesof 1s, 2s levels.  

For superheavy ion Z=170 there is noe experiment and we an only 

compair theoretical results with the fermi function for charge distribution in a 

nucleus with data of analogous calculation with the gauss function for charge 

distribution. The electron moves in the nuclear V plus vacuum-polarization 

potential (the core potential is naturally absent). In table 1 we present the 
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experimental [21] an theoretical (our test calculation) results for hyperfine 

splitting energies  for 1s, 2s levels of hydrogen atom  There is very good 

agreement between theiry and experiment.  

Table 3.1 

Experimental [41] an theoretical (our test calculation) results for hyperfine 

splitting energies for 1s, 2s levels of hydrogen atom 

 

Electron term  

Quantum numbers 

of total moment 

Experiment 

(F,F‘), MHz 

E(F,F‘), 10
-3

 cm
-1

 
 

Наш расчет 

(F,F‘), MHz 

E(F,F‘), 10
-3

 cm
-1

 

1s 
2
S1/2  (1,0) 1420,406 

 

47, 379 

1419,685 

 

47, 355 

2s 
2
S1/2  (1,0) 177,557 

 

5, 923 

177,480 

 

5, 920 

 

In table 3.2 we present the results of our calculation for the hyperdine structure 

parameters (plus deriviatives of the energy contribution on nuclear radius) for 

the superheavy H-like ion with nuclear charge Z=170. We have used the 

denotations as follows:    

 

A=10
8
A/Z

3
gI,(eV);     

 

DA=(10
-2

/Z
4
gI)(A/R), (eV/cm); 

 

B=(10
7
BI(2I-1))/Z

3
Q, (eV/Barn); 

                          

                        DB=[(10
-3

I(2I-1))/Z
4
Q](B/R), (eV/Barn cm);             (3.22) 

 

U=-(10
4
/Z

4
)<U(r,R)>, (eV);   

 

DU=(10
-1

/Z
5
)(<U(r,R)>/R), (eV/cm);. 

 

DV=[10
-8

/Z
3
](<V>/R), (eV/cm); 
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Table 3.2 

Characteristics of one-electron states for H-like ion with nuclear charge Z=170 

(our calculation) 

 

 1s1/2 2s1/2 2p1/2 2p3/2 3s 1/2 3p1/2 3p3/2 

A 4337 831 3867 1,59 207 322 0,615 

DA 1039 228 941 0,0001 56,8 84,0 0,0001 

B 9091 1897 8067 0,07 475 707 0,04 

DB 7245 1557 6405 0,0008 395 574 0,0003 

DV 1255 273 1108 0,0011 67,7 98,3 0,0005 

U 1453 282 1301 1,31 69,3 109 0,62 

DU 2343 503 2071 0,0015 127 185 0,0007 

 

 

3.7.2 Li-like multicharged ions 

 

The detailled results of calculation of different energy contributions (eV) into 

energy of the 2s1/2-2p1/2  transition in spectrun of the U
89+

, calculated within 

different theoretical schemes: our approach (column F), MCDF  (Cheng-Kim-

Desclaux; А); model PT with the Dirac-Fock ―0‖ approximation (Ivanov etal; 

B);  relativistic multiparticle PT with the zeroth Hartree-Fock-Slater potential 

(Persson-Lindgren-Salomonson; С);  multiparticle PT with Dirac-Fock ―0‖ 

approximation  (Blundell; D) have been presented in refs. [2,31-38].  Though 

agreement between all theoretical and experimental data is in a whole quite 

good, more exact results are obtained by meqans of the methods (С) and (F).   

The results of our calculation for contributions to energy due to the the self-

energy (SE) part of the Lamb shift and vacuum polarization correction (VP)  of 

the Lamb shift for Li-like ions (account from core 1s
2
 energy) are also presented 

in ref. [38].  

The detailed analysis of the VP and SE energy contributions shows that for 

ions with small Z the QED effects contribution is not significant, but with 

growth of Z (Z>40) a contribution of the QED became very important. 

Moreover for heavy and superheavy ions its account is principally important. 

Regarding the role of the nuclear finite size effect, let us underline that  for 



 87 

multicharged ions with z<20 its contribution is very small, but for ions wit Z>70 

it can approximately be equal to the vacuum polarization contribution on 

absolute value. In table 3.3 the results of calculation of the nuclear correction 

into energy of the low transitions for Li-like ions are presented. Our calculation 

showed also that a variation of the nuclear radius on several persents could lead 

to to changing the transition energies on dozens of thousands 10
3
cm

-1 
 There was 

performed the calculation of constants of the hyperfine interaction: the electric 

quadruple constant B, the magnetic dipole constant A with inclusion of nuclear 

finiteness and the Uehling potential for Li-like ions. Analogous calculations of 

the constant A for ns states of hydrogen-, lithium- and sodium-like ions were 

made in ref. [31-38]. In these papers other basis‘s of the relativistic orbitals were 

used. Besides, another model for the charge distribution in the nucleus was 

accepted and another method of numerical calculation for the Uehling potential 

was used. In table 3.4 the calculation results for the constants of the hyperfine 

splitting for the lowest excited states of  Li-like ions are presented (see ref. [12]). 

 

Table 3.3  

Results calculation of the nuclear finite size correction into energy  (сm
 –1

) of the 

low transitions for Li-like ions and values of the effective radius of nucleus  

(10
 –13

 cm) 

 

Z 2
21S - 2

21p  2
21s  - 2

23p  R 

20 - 15,1 - 15,5 3,26 

30 - 117,5 - 118,0 3,73 

41 - 659,0 - 670,0 4,14 

59 - 6 610,0 - 6 845,0 4,68 

69 - 20 690,0 - 21 712,0 4,93 

79 - 62 315,0 - 66 931,0 5,15 

92 - 267 325,0 - 288 312,0 5,42 
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Table 3.4 

Constants of the hyperfine electron-nuclear interaction: A=Z
3
gI A cm

-1
,     

B= B
II

QZ

)12(

3


 cm

-1  

 

nlj Z 20 69 79 92 

2s A  93 –03 176 -02 215 -02 314 -02 

3s A  26 –03 51 –03 63 –03 90 –03 

4s A  15 –03 19 –03 24 –03 36 –03 

2p1/2 A  25 –03 56 –03 71 –03 105 –02 

3p1/2 A  81 –04 16 –03 20 –03 31 –03 

4p1/2 A  32 –04 72 –04 91 –04 11 –03 

2p3/2 A  50 –04 67 –04 71 –04 72 –04 

 B  9 –04 13 –04 15 –04 17 –04 

3p3/2 A  13 –04 19 –04 21 –04 22 –04 

 B  31 –05 51 –05 55–05 62 –05 

4p3/2 A  62 –05 89 –05 92 –05 8 –04 

 B  10 –05 20 –05 22 –05 26 –05 

3d3/2 A  88 –05 10 –04 11 –04 12 –04 
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 B  51 –06  9 –05 10 –05 11 –05 

4d3/2 A  35 –05 51 –05 55 –05 58 –05 

 B  12 –06 44 –06 50 –06 56 –06 

3d5/2 A  36 –05 48 –05 50 –05 52 –05 

 B  21 –06 38 –06 39 –06 40 –06 

4d5/2 A  15 –05 19 –05 20 –05 21 –05 

 B  59 –07 15 –06 16 –06 17 –06 

 

 

 

 

 

 

 

 

Chapter 4 

OPTIMIZED RELATIVISTIC PERTURBATION THEORY TO 

CALCULATING THE HYPERFINE LINE SHIFT AND BROADENING 

FOR HEAVY ATOMS IN THE BUFFER GAS 
 

4.1 Introduction 

 

Here a consistent relativistic approach, based on the atomic gauge-

invariant relativistic perturbation theory and the exchange perturbation theory, is 

presented  and applied to calculating the interatomic potentials, van der Waals 

constants, hyperfine structure line collision shift and broadening for heavy 

atoms in an atmosphere of the buffer inert gas. The corresponding data on the 

collision hyperfine line shift and broadening  for the thallium, alkali (Rb, Cs) 

and lanthanide (ytterbium) atoms in an atmosphere of the inert gas (He, Kr, Xe) 

are listed and compared with available alternative theoretical and experimental 

results. 

The broadening and shift of atomic spectral lines by collisions with 

neutral atoms has been studied extensively since the very beginning of atomic 

physics, physics of collisions etc [1–5]. High precision data on the collisional 
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shift and broadening of the hyperfine structure lines of heavy elements (alkali, 

alkali-earth, lanthanides, actinides and others) in an atmosphere of the buffer 

(for example, inert) gases are of a great interest for modern quantum chemistry, 

atomic and molecular spectroscopy, astrophysics and metrology as well as for 

studying a role of weak interactions in atomic optics and heavy-elements 

chemistry [1-10]. As a rule, the cited spectral lines shift and broadening due to a 

collision of the emitting atoms with the buffer atoms are very sensitive to a kind 

of the intermolecular interaction. It means that these studies provide insight into 

the nature of interatomic forces and, hence, they provide an excellent test of 

theory.    

An accurate analysis of the spectral line profiles is a powerful technique 

for studying atomic and molecular interactions and is often necessary for 

probing matter in extreme conditions, such as in stellar atmospheres, ultracold 

traps and Bose–Einstein condensates [3,6].  

Besides, calculation of the hyperfine structure line shift and broadening 

allows to check a quality of the wave functions (orbitals) and study a 

contribution of the relativistic and correlation effects to the energetic and 

spectral characteristics of the two-center (multi-center) atomic systems.  

From the applied point of view, the mentioned physical effects form a 

basis for creating an atomic quantum measure of frequency [10,12,14]. The 

corresponding phenomenon for the thallium atom has attracted a special 

attention because of the possibility to create the thallium quantum frequency 

measure. Alexandrov et al [10] have realized the optical pumping thallium 

atoms on the line of 21GHz, which corresponds to transition between the 

components of hyperfine structure for the Tl ground state. These authors have 

measured the collisional shift of this hyperfine line in the atmosphere of the He 

buffer gas.  

The detailed non-relativistic theory of collisional shift and broadening the 

hyperfine structure lines for simple elements (such as light alkali elements etc.) 

was developed by many authors (see, for example, Refs. [1-14]). However, until 

now an accuracy of the corresponding available data has not been fully adequate 

to predict or identify transitions within accuracy as required for many 

applications.   

It is obvious that correct taking into account the relativistic and 

correlation effects is absolutely necessary in order to obtain sufficiently 
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adequate description of spectroscopy of the heavy atoms in an atmosphere of the 

buffer gases. This stimulated our current investigation whose goals were to 

propose a new relativistic perturbation theory approach to calculating the 

interatomic potentials and hyperfine structure line collision shifts and 

broadening for the alkali and lanthanide atoms in an atmosphere of the inert 

gases. The basic expressions for the collision shift and broadening hyperfine 

structure spectral lines are taken from the kinetic theory of spectral lines 

[6,7,11,12].  

The exchange perturbation theory (the modified version ЕL-НАV) has 

been used to calculate the corresponding potentials (see details in [1-5]).   

Let us note that sufficiently detailed reviews of the different versions of 

exchange perturbation theory are presented, for example, in Refs.[1-9]. It is 

worth to remind about the known difficulties of the exchange perturbation 

theory, associated with complex structure series, which contain the overlap 

integrals and exchange integrals [1].  Due to the ambiguity of the expansion in 

the antisymmetric functions it had been  built a number of different formalisms 

of an exchange perturbation theory.  

Usually one could distinguish two groups in dependence on the zero-order 

approximation of the Hamiltonian. In the symmetry adapted theories the zeroth-

approximation Hamiltonian is an asymmetric, but the zeroth- approximation 

functions have the correct symmetry. In symmetric formalisms there is 

constructed a symmetric zeroth-approximation Hamiltonian such as the 

antisymmetric function is its eigen function.  

Further formally standard Rayleigh - Schrodinger perturbation theory is 

applied. However, this approach deals with the serious difficulties in switching 

to systems with a number of electrons, larger than two. In addition, the bare 

Hamiltonian is not hermitian.  

          So the symmetry adapted theories gain more spreading. In particular, 

speech is about versions as EL-HAV (Eisenschitz-London-Hirschfeleder- van 

der Avoird), MS-MA (Murrel-Shaw-Musher-Amos) and others (see details in 

Refs. [4,5]).  

The detailed analysis of advantages and disadvantages of the exchange 

perturbation theory different versions had been performed by Batygin et al (see, 

for example, [11,12]) in studying the hyperfine structure line shift of the 

hydrogen atom in an atmosphere of an inert buffer gas.  In our work the 
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modified version of the ЕL-НАV exchange perturbation theory has been used 

to calculate the corresponding potentials (see details in [4]).  

On fact [4] this is the Schrödinger type perturbation theory for 

intermolecular or interatomic interactions, using the wave operator formalism. 

To include all exchange effects, wavefunctions are used whose symmetry with 

respect to permutations of both electronic and nuclear coordinates can be 

prescribed arbitrarily. The interaction energy is obtained as a series in ascending 

powers of the interaction operator. Further van der Avoird [4] has proved that 

every term in this series is real and that the terms of even order are negative 

definite for perturbation of the ground state. It has been also verified that up to 

and including third order the results of this theory, if they are restricted to 

electron exchange only, agree exactly with those of the Eisenschitz-London 

theory (see other details in Refs. [1-5]).  

The next important point is choice of the most reliable version of 

calculation for multielectron atomic field and generating the basis of atomic 

orbitals. In Refs. [17-30] a consistent relativistic energy approach combined 

with the relativistic many-body perturbation theory has been developed and 

applied to calculation of the energy and spectroscopic characteristics of heavy 

atoms and multicharged ions.  

This is the relativistic many-body perturbation theory with the optimized 

Dirac-Fock (Dirac-Kohn-Sham) zeroth approximation and taking into account 

the nuclear, radiation, exchange-correlation corrections.  It is worth to remind 

that this approach has been successfully used to calculate the -decay 

parameters for a number of allowed (super allowed) transitions and study the 

chemical bond effect on -decay parameters [29]. This approach  has been used 

in our work  to generate a basis of relativistic orbiltals for heavy atoms.   

Besides, the correct procedures of accounting for the many-body 

exchange-correlation effects and relativistic orbital basis optimization (in order 

to provide a performance of the gauge-invariant principle) as well as accounting 

for the highly excited and continuum states have been used.  

Earlier it was shown [21-30] that an adequate description of the energy and 

spectral characteristics of the multi-electron atomic systems requires using the 

optimized basis of wave functions.  

In Ref. [34] a new ab initio optimization procedure for construction of the 

optimized basis had been proposed and based on the principle of minimization 
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of the gauge dependent multielectron contribution ImEninv  of the lowest QED 

perturbation theory corrections to the radiation widths of atomic levels. The 

minimization of the functional ImEninv leads to the Dirac-Kohn-Sham-like 

equations for the electron density that are numerically solved. This procedure 

has been implemented into our approach.  

In result, the numerical data on the hyperfine line collision shifts and 

broadening for some alkali (Rb, Cs), thallium and ytterbium atoms in 

atmosphere of the inert gas (such as He, Ke, Xe) are presented and compared 

with available theoretical and experimental data (see, detailes,  for example, in 

[1-12]).  

Besides, new data on the van der Waals constavts and other parameters 

for the studied two-atomic systems are presented too.  

4.2 Optimized atomic perturbation theory and advanced kinetic theory of 

spectral lines 
 

In order to calculate a collision shift of the hyperfine structure 

spectral lines one can use the following expression known in the kinetic theory 

of spectral lines shape (see Refs. [6,7,11,12]):  

 

                                             dRRkTRURdwRg
kT

w

p

D
f p

2

0
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
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                         (4.1b) 

 

Here U(R) is an effective potential of interatomic interaction, which has 

the central symmetry in a case of the systems A—B (in our case, for example,  

A=Rb,Cs; B=He); T is a temperature, w0 is a frequency of the hyperfine 

structure transition in an isolated active atom; d(R)=Dw(R)/w0 is a relative 

local shift of the hyperfine structure line; (  1 g R ) is a temperature form-factor.  

The local shift is caused due to the disposition of the active atoms (say, the 

alkali atom and helium He) at the distance R. In order to calculate an effective 

potential of the interatomic interaction further we use the exchange perturbation 
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theory formalism (the modified version ЕL-НАV) [9]).  

Since we are interested by the alkali (this atom can be treated as a  one-

quasiparticle systems, i.e. an atomic system with a single valence electron above 

a core of the closed shells) and the rare-earth atoms (here speech is about an 

one-, two- or even three-quasiparticle system), we use the classical model for 

their consideration. The interaction of alkali (A) atoms with a buffer (B) gas 

atom is treated in the adiabatic approximation and the approximation of the rigid 

cores. Here it is worth to remind very successful model potential simulations of 

the studied systems (see, for example, Refs. [32-41]).  

In the hyperfine interaction Hamiltonian one should formally consider as a 

magnetic dipole interaction of moments of the electron and the nucleus of an 

active atom as an electric quadrupole interaction (however, let us remind that, as 

a rule, the moments of nuclei of the most (buffer) inert gas isotopes equal to 

zero) [6]. 

The necessity of the strict treating relativistic effects causes using 

the following expression for a hyperfine interaction operator HHF (see, eg., 

[1,5]):  

 

                                            НHF= 


N

i i

ii

r

r
Ia

1
3


,                                   (4.2) 

 

          
cm

he
a

p2
2

2

 , 

  

where  І – the operator of the nuclear spin active atom,  i – Dirac matrices, mp – 

proton mass,   - moment of the nucleus of the active atom, expressed in the 

nuclear Bohr magnetons.  

Of course, the summation in (4.2) is over all states of the electrons of 

the system, not belonging to the cores. The introduced model of 

consideration of the active atoms is important to describe an  effective 

interatomic interaction potential (an active atom – an passive atom), which 

is centrally symmetric (JА=
1
/2) in our case (the interaction of an alkali atom 

with an inert gas atom).  

Let us underline that such an approximation is also acceptable in the 
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case system ―thallium atom – an inert gas atom‖ and some rare-earth 

atoms, in spite of the presence of p-electrons in the thallium (in the case of 

rare-earth atoms, the situation is more complicated). 

Next, in order to determine a local shift within the consistent theory 

it should be used the expression obtained in one of versions of the 

exchange perturbation theory, in particular, EL-HAV version (see [1-5,8,9]). 

The relative local shift of the hyperfine structure line is defined with up to the 

second order in the potential V of the Coulomb interaction of the valence 

electrons and the cores of atoms as follows: 
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Here S0 is the overlapping integral; С6 is the van der Waals coefficient; I is the 

potential of ionization; Е1a,b is the energy of excitation to the  first (low-lying) level 

of the corresponding  atom. The values 1, 2 in Eq. (4.3a) are the first order 

non-exchange and exchange non-perturbation sums correspondingly. These 

values are defined as follows:   
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where 
'

HFН  = 
3

1

1][

r

ra z
is the transformed operator of the hyperfine interaction;  

zra ][ 1  is Z component of the vector product; Z - quantization axis directed 

along the axis of the quasi-molecule; N is the total  number of electrons, 
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which are taken into account in the calculation;  Ek,      NF
b

k
a

kk 211 ''   are an 

energy and a non-symmetrized wave function of state k ={ka,,kb} for the 

isolated atoms A and B.  

The non-exchange matrix element of the Coulomb interatomic 

interaction is as: 

 

                                      Vko = < Фk (1)  | V (1) | Ф0 (1)>.                       (4.5a) 

 

Correspondingly the exchange matrix element is as follows: 
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The operator V (i)  (for example, in a case of the system Rb(a)-Не(b)) can be 

presented as follows: 
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where USCF(r)  is the self-conjunctive field, created by an active atom core. The 

useful expressions for approximating the interaction potential and shift are 

presented in Refs. [11,12]: 
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where the overlap integrals S0А-B are determined by the standard expressions, and 

the potential ex

B-AU  is calculated in the framework of the exchange perturbation 

theory [12]:  

 

                                                  U
ex

=(V00 - U00)/(1-S0).                                    (4.9) 

 

         It should also be noted that as a rule, in the alternative non-relativistic theories 
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of [6-9]  the commutator technique [11] is used when calculating the sums of the 

type (4). Earlier the reason of using actually approximate non-relativistic methods 

was the lack of reliable information on the wave functions of the excited states of 

the complex atoms.  

          Starting approximations in alternative theories [11,12] were rather simple 

approximations for the electronic wave functions of both active and passive 

atoms. In particular, in Refs. [11] the electronic wave functions were 

approximated by simple Slater expression (the approximation of the effective 

charge = Z-approximation ) or simple analytical approximation formulas by 

Löwdin (L- approximation) and Clementi-Roothaan (C - approximation) [42] in 

studying the shift and broadening the hyperfine lines for such atoms as He , Rb, 

Cs etc.  

          In Refs. [12]  the wave functions have been determined within the Dirac-

Fock approximation, however, these authors have used the approximate non-

relativistic expressions to  describe the corresponding interatomic interaction 

potential. Besides, determination of the polarizabilities and the van der Waals 

constants has been performed with using the following London‘s expressions 

[6,12]:  
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where  f is the oscillator strength, other notations are the standard. However, 

sufficiently large error in definition of the van der Waals constants could provide 

a low accuracy of calculating the interatomic potentials. It  is worth to note that 

the authors of the cited works indicate on the sufficiently large error (~ 50% ) in 
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the calculation of the collision shifts.   

Let us return to consideration of the van der Waals coefficient С6 for the 

interatomic A-B interaction. The van der Waals coefficient may be written as  

[13,43,44]: 
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where C6,0 (L) is the isotropic component of the interaction and C6,2 (L) is the 

component corresponding to the P2(cos) term in the expansion of the interaction 

in Legendre polynomials, where the angle specifies the orientation in the space-

fixed frame.  

The dispersion coefficients C6,0 (L) and C6,2 (L) may be expressed in terms 

of the scalar and tensor polarizabilities );(0 iwL  and  ) (2 L; iw evaluated at 

imaginary frequencies [13]. In particular, one may write in the helium case as 

follows: 
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where He is the dynamic polarizability of He.  

The polarizabilities at imaginary frequencies are defined in atomic units 

by the following formula: 
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where  E is the energy of the electronically excited state |LM > and the z axis 

lies along the internuclear axis.  

          Obviously, generally speaking, the calculation of the dynamic 

polarizability and the resulting van der Waals constants is connected with a 

summation over infinite number of intermediate states (the states of the discrete 

spectrum and integrating over the states of the continuous spectrum).  
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This is a known problem, which  greatly complicates the computational 

procedure and significantly reduces an  accuracy of the computing the atomic 

characteristics.  

On the other hand, it is known that the space of functions of the atomic 

states can be stretched over the space of the Sturm orbitals, which is both 

discrete and countable [6,35,43].  

         Thus, it allows to eliminate a problem of accounting the continuous 

spectrum within the formally exact approach.  

         Naturally, the set of Sturm orbitals should be introduced with specially 

prescribed asymptotics that is crucial for the convergence of the spectral 

expansion, including a spectral expansion of the corresponding Green's 

functions.  

4. 3 Relativistic many-body perturbation theory with the Kohn-Sham 

zeroth approximation and the Dirac-Sturm method 

 

4.3.1 Relativistic many-body perturbation theory with the Kohn-Sham 

zeroth approximation 

 

           As it is well known (see also Refs. [1,7]), the non-relativistic Hartree-

Fock method is mostly used for calculating the corresponding wave functions. 

More sophisticated approach is based on using the relativistic Dirac-Fock wave 

functions (first variant) [15,16]. Another variant is using the relativistic wave 

functions as the solutions of the Dirac equations with the corresponding density 

functional, i.e within the Dirac-Kohn-Sham theory [45-48]. In fact, the 

theoretical models involved the use of different consistency level 

approximations led to results at quite considerable variance.  

It is obvious that more sophisticated relativistic many-body methods should be 

used for correct treating relativistic, exchange-correlation and even nuclear 

effects in heavy atoms. (including the many-body correlation effects, intershell 

correlations, possibly the continuum pressure etc [21-30]).  In our calculation we 

have used the relativistic functions, which are generated by the Dirac-Kohn-

Sham Hamiltonian [18,27-30]. In a number of papers it has been rigorously 

shown that using the optimized basis in calculating the atomic electron density 

dependent properties has a decisive role. This topic is in details discussed in 

many Refs. (see, for example, [6,15,28-32,49]).  
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As usual, a multielectron atom is described by the Dirac relativistic 

Hamiltonian (the atomic units are used): 

 

                                                 .i i j

i i j

H h(r ) V r r
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                                 (4.14)  

 

Here, h(r) is one-particle Dirac Hamiltonian for electron in a field of the finite 

size nucleus and V is potential of the inter-electron interaction.  

In order to take into account the retarding effect and magnetic interaction 

in the lowest order on parameter 2
 (the fine structure constant) one could write 

[18]:   
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where ij is the transition frequency; i ,j are the Dirac matrices. The Dirac 

equation potential includes the electric potential of a nucleus and electron shells 

and the exchange-correlation potentials. The standard KS exchange potential is 

as follows [45]:     
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In the local density approximation the relativistic potential is [45]: 
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where [ ( )]XE r is the exchange energy of the multielectron system corresponding 

to the homogeneous density ( )r , The corresponding correlation functional is [6, 

28]: 

 

      
1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b r       ,              (4.17) 
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where b is the optimization parameter (for details see Refs. [6,31,32]).  

As it has been underlined, an adequate description of the multielectron 

atom characteristics requires using the optimized basis of wave functions. In our 

work it has been used ab initio optimization procedure for construction of the 

optimized basis of the relativistic orbitals. It is reduced to minimization of the 

gauge dependent multielectron contribution ImEninv of the lowest QED 

perturbation theory corrections to the radiation widths of atomic levels.  

The minimization of the functional ImEninv leads to the Dirac-Kohn 

Sham-like equations for the electron density that are numerically solved. 

According to Refs. [31], the gauge dependent multielectron contribution can be 

expressed as functional, which contains the multi-electron exchange-correlation 

ones. From the other side, using these functionals within relativistic many-body 

perturbation theory allows effectively to take into account the second –order 

atomic perturbation theory (fourth-order QED perturbation theory) corrections. 

In our work the corresponding functionals of Ref. [34] have been used. As a 

result one can get the optimal perturbation theory one-electron basis. In concrete 

calculations it is sufficient to use more simplified procedure, which is reduced to 

the functional minimization using the variation of the correlation potential 

parameter b in Eq. (4.16).   

The differential equations for the radial functions F and G (components of 

the Dirac spinor) are: 

 

                                      1 0,
F F

m V G
r r

 


     


 

 

                                     1 0,
G G

m V F
r r

 


     

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where F, G are the large and small components respectively;  is the quantum 

number.  

 At large , the functions F and G vary rapidly at the origin; so, one could  

have  
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                                             1 2 2 2, ,  F r G r r z      .  

 

This creates difficulties in numerical integration of the equations in the region 

r 0. To prevent the integration step from becoming too small it is usually 

convenient to turn to new functions isolating the main power dependence: 
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The Dirac equations for F and G components are transformed as follows [18]: 
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                              ' ( | |) / .ng g r ZVf ZE f                             (4.19) 

 

Here En is one-electron energy without the rest energy. The boundary values 

are defined by the first terms of the Taylor expansion: 

 

                      0 2 1 ; 1ng V E r Z f       at  0  ,          

  

                              2 20 2 ; 1nf V E Z Z g       at  0  .      (4.20) 

 

The condition f, g0 at r  determines the quantified energies of the 

state  En. The system of equations (4.19) is numerically solved by the Runge-

Kutta method (‗Superatom‘ PC package is used [17-37]). The other details can 

be found in Refs. [21-30]. 

The basic idea of the Dirac-Sturm approach is as follows [6,9,35,43]. In 

the usual formulation as basis functions used system of eigenfunctions of the 

generalized eigenvalue problem for the family of operators: 
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                                               gH


)( 0 ,                                   (4.21) 

 

where  Н0 – unperturbed Hamiltonian of a system, g


 is a weighting operator, 

generally speaking, do not commute with the operator Н0;    , - eigenvalues 

and eigenfunctions of equation (4.21). 

A weighting operator in Eq. (4.21) is usually chosen so that unlike a 

spectrum of H0, the spectrum of (4.21) is a purely discrete. Using the 

orthogonality and completeness conditions, it is easy to show that the Green 

operator of the unperturbed problem is diagonal in a representation, defined by  

a set of functions   and the corresponding expansion is as follows:  
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and contains only a single summation over the quantum numbers {}. 

As the operator H0 we use the Dirac-Kohn-Sham Hamiltonian.  The 

corresponding Dirac-Kohn-Sham equation can be written in the next general 

form [9]: 

 

                                        0)(])([  xuxh nnDKS                           (4.23) 

 

Along with discrete spectrum (=nF) there is a continuous 

spectrum of the eigen-values (>F), corresponding to the Dirac-Kohn-

Sham virtual orbitals. In the Sturmian formulation of the problem one 

should search for the eigen-values and eigen-functions of the following 

equation: 

 

                                    )(])([ xxhDKS                          (4.24) 

 

where                                   

                                          





1

1

N

k

nk
E                                  (4.25) 

 

Let us note that when <0   equation (24) has a purely discrete 
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spectrum eigenvalues =(). 

As the weight of the operator there are commonly used operators, 

proportional to a part or even all potential energy in the Hamiltonian Н0. 

Further, it is easily to understand that the Fourier-image of the one-particle 

Green's function in the Dirac-Kohn-Sham approximation can be represented as 

an expansion on the eigenfunctions of (24) [6,9]: 
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where )(~ x is the Sturm designed function: 
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In the case of the single-particle perturbed operator, say, 

                                                 

                                                  W(x)=


N

a

a xw
1

)(                                       (4.28) 

 

the second-order correction to an energy of the atom is determined by the 

standard expression of the following type:  
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              (4.29) 

 

and it actually contains only the summation over the occupied states (core) and 

virtual orbitals of the Dirac-Kohn-Sham-Sturm type relating to a purely discrete 

spectrum.  

If the operator )(xwa  is an interaction with an external electric field, the 

expression (29) determines the many-electron atom polarizability in the 

relativistic Dirac-Kohn-Sham approximation. 
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Let us illustrate the specific numerical implementation of relativistic 

method of the Sturm expansions on the example of the rubidium atom. 

Calculation of the static polarizability is actually reduced to two stages. In the 

first stage one should  solve the system of relativistic Dirac-Kohn-Sham 

equations with respect to the Dirac radial functions and the Lagrange diagonal 

parameters 
5s

,
4p

, 
4s

  etc.  

In the second stage of the calculation procedure the system of equations 

equivalent to (24) is solved numerically:   

 

                  0))|()()((  iiiXCiN brVrVrVci  ,          (4.30) 

 

where, as above, VN  is the potential of the electron-nuclear interaction, VС is a  

mean-field potential generated by the other electrons; VХ is the Kohn-Sham 

potential.  

Two parameters i  ,  i  correspond to each orbital ―i‖ of a real or Sturmian 

state. The parameter  i  =1 for orbitals of the real states. It is also important to 

emphasize that all orbitals of the Sturmian supplement of the Eq. (4.26) have an 

exponential asymptotic behavior as r, which coincides with the asymptotic 

behavior of the last real state orbitals in the corresponding basis of the real state 

orbitals. In each case, the functions of the accounted real states represent a 

reduced spectral expansion of the Green's function G.  

The residual  part decreases as exp[-r(-2)1/2
]  for r (here   is the 

eigen energy of the explicitly accounted last real state). All orbitals of the Sturm 

supplement have absolutely the same asymptotic in the corresponding basis. 

This fact is very significant in terms of convergence of the method.  

As usually, the number of explicitly accounted real state functions is 

determined by the concrete numerical application of the method to computing 

the studied atomic characteristics. Other details can be found, for example,  in 

Refs. [6,9,35]. 
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4.4   Shift and broadening of the hyperfine spectral line for multielectron 

atoms in an atmosphere of the buffer gas 

 

4.4.1 Shift and broadening of the thallium and ytterbium hyperfine line in 

an atmosphere of the inert gas 

 

At first, let us consider the thallium atom in atmosphere of the inert gas. 

Its studying is of a great interest as this atom a sufficiently heavy. In contrast to 

more simple alkali atoms (look below) the thallium atom contains p-electrons 

outside closed shells and has a nuclear charge Z = 81. Obviously, a correct 

treating relativistic and exchange-correlation effects is critically important for 

accurate describing its energy and spectral characteristics.  

In Table 4.1 the theoretical values of the van der Waals constants ( in 

atomic units ) respectively, for atom Tl (Tl - He, Kr, Xe) are listed. There are 

presented our results (*) obtained from our relativistic calculation by the 

optimized Dirac-Kohn-Sham method combined with the Dirac-Sturm approach, 

the calculation results by Batygin et al, based on the approximation formulas 

(4.10a)-(4.10c), the Hartree-Fock data by Penkin et al, as well as experimental 

data (from refs. [8,9,10-13]).  

 

Table 4.1   

Theoretical values of the van der Waals constants ( in atomic units ) 

respectively, for atom Tl  (Tl - He, Kr, Xe); see explanations in the text. 

 

 TI – He TI – 

Ar 

TI- Kr TI- Xe 

С6
I 
 (10a) 

С6
II   

(10b) 

С6
III  

(10c) 

С6  (Hartree-Fock) 

С6  (our data 
a
)

* 

С6  (our data
b
)

* 

С6 (experiment) 

17.5 

20.5 

20.33 

6.59 

12.1 

14.5 

- 

129 

148 

133 

48 

106 

119 

100 

180 

212 

193 

71 

157 

173 

150 

291 

318 

296 

111 

265 

289 

260 
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Note:
a
 – calculation with optimization

*
; 

b
 – calculation without optimization; 

In Table 4.2 there are listed the results of our calculation of the interatomic 

interaction potential U (R) and the values of the local shift δω (R) ( all values are 

in atomic units ) of the thallium hyperfine spectral line for different values of the 

internuclear distance in the system TI - He. For comparison, similar results of 

the calculation of the potential U (R) and the local shift δω (R) with using the 

single-configuration Dirac-Fock method [12] are presented too.  

It is noteworthy sufficiently large error for values of the van der Waals 

constants, obtained during calculating on the basis of formula (4.10), as well as 

within the standard Hartree-Fock method.  

The calculation shows the importance of the quality of the atomic wave 

functions (using an optimization and correct account for the exchange-

correlation effects and continuum ―pressure‖ etc.) for an adequate description of 

the corresponding constants.  

Table 4.2  

Local shift and interatomic interaction potential (in atomic units)  

for the pair TI - He. 

 Dirac-Fock method 

[12] 

Our theory [8,9] 
R (R)  

10
2
 

U (R) • 10
3
 (R)  10

2
 U (R) • 10

3
 

5 4.22 7.6 3,92 6.93 

6 1.34 2.0 1,21 1.76 

7 0.329 0.44 0.27 0.38 

8 0.0788 0.099 0.070 0.085 

9 0.0032 0.024 0.0025 0.020 

10 -0.0145 -0.076 -0.0131 - 0.067 

11   - 0.0119 -0.008 

 

In Table 4.3 we list the results of our calculation (as all values are given 

in atomic units) interatomic interaction potential U (R) and the values of the 

local shift δω (R) for pairs TI-Kr, TI-Xe.  

 

Table 4.3  

Local shift and interatomic interaction potential (in atomic units) for the pair TI 

– Kr, Xe (see text) 

 

 Т1-Kr (Our theory) Т1-Xe  (Our theory) 
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R (R)  

10
2
 

U (R) • 10
3
 (R)  

10
2
 

U (R) • 10
3
 

5 -14.30 13.24 -19,05 18.31 

6 -2.88 6.10 -8.22 5.95 

7 -1.44 1.72 -2.67 2.04 

8 -0.67 0.49 -1.52 0.65 

9 -0.48 0.06 -0.74 0.01 

10 -0.35 -0.03 -0.48 - 0.08 

11 -0.24 - 0.04 - 0.37 -0.09 

 

Further in Table 4.4 we present our theoretical values (theory C) for the thallium 

atom hyperfine line collisional shift at the temperature T = 700K for a number of 

the diatomic systems, in particular, the pairs of TI - He, TI - Kr, Tl-Xe. For 

comparison, in this table there are also listed the results of calculation on the 

basis of the single-configuration Dirac-Fock method Batygina DF et al. [12] 

(theory A), the optimized DF-like method [8] (theory B), as well as 

experimental data Choron-Scheps-Galagher ( the Virginia group) . The 

qualitative estimate from Ref. [10] has been listed as well.  

 

Table 4.4  

The collisional shift f (in Hz/Torr) of the thallium hyperfine line for pairs  TI - 

He, TI - Kr, Tl-Xe at T = 700
o
K;  Experiment and the qualitative estimate by 

Choron-Scheps-Galagher (Virginia group); Theory: A- single-configuration 

Dirac-Fock method; B – the optimized Dirac-Fock method; C- our theory  

(see text). 

System Т1-Не Т1-Kr Т1-Xe 

Experiment 130  30 -490±20 

 

-1000±80 

  Qualitative 

estimate  

- - -5500 

 Theory A 155.0 -850.0 -1420.0 

Theory B 139.0 - - 

Theory C 137.2 -504 -1052 

 

In Table 4.5 we present the theoretical data on the collisional shift f (in 

Hz/Torr) the thallium atom hyperfine line at different temperatures (T
0
K) for the 

systems TI - He, TI - Kr, Tl-Xe: Theory A - the single-configuration Dirac-Fock 
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method Batygina DF et al. [12]; C- our theory [8,9].  

 

Table 4.5 The temperature dependence of the collisional shift f (in Hz/Torr) for 

pairs  TI - He, TI - Kr, Tl-Xe;  Theory: A- single-configuration Dirac-Fock 

method; C- our theory;  

Pair Т1—

Не 

 

 

Т1—

Не 

 

Т1—

Kr 

Т1—Xe 

T, K Theory 

A 

Theory 

C  

Theor

y C  

Theory 

C  700 155 137,2 -504 -1052 

750 153.0 135,3 -461 -964 

800 151 134,1 -422 -899 

850 149 133,3 -391 -841 

900 147.5 131,4 -362 -794 

950 146 129,1 -330 -751 

1000 143 126,2 -308 -713 

As can be seen from the presented data, our theory provides a physically 

reasonable agreement with experimental data on the hyperfine line collisional 

shifts for the pairs of TI-He, TI-Kr, Tl-Xe.   

In Table 4.6 we present our calculated values for  adiabatic broadening  

Га/р (in Hz / Torr) of the thallium atom hyperfine line at different temperatures 

for the TI – He pair: C - our theory; A theory [12]. In Table 4.7 we list the 

similar our theoretical data on the thallium atom hyperfine line adiabatic 

broadening of Га/р (in Hz / Torr) for the pairs TI - Kr, TI-Xe.  

 

Table 4.6 

Adiabatic broadening Га/р (in Hz / Torr) for the TI - He:  

Theory A- single-configuration Dirac-Fock method; C- our theory. 

Т, К TI – He 

Theory A 

TI – He 

Theory C 

700 

800 

900 

1000 

2.83 

2.86 

2.90 

2.89 

2.51 

2.54 

2.58 

2.56 
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Table 4.7   

Adiabatic broadening Га/р (in Hz / Torr) for the TI – Kr, Yl-Xe (our theory). 

Т, К TI- Kr TI- Xe 

700 

800 

900 

1000 

      6.81 

      5.89 

      5.26 

      5.24 

      17.3 

      14.6 

      12.9 

      11.5 

 

It is easily to estimate that the ratio values ( Га/р) / fр ~ 1/50 for the system 

TI - He, ( Га/р) / fр ~ 1/70 for the system TI - Kr and ( Га/р) / fр ~ 1/60 for the TI-

Xe. These estimates (at first it had been noted in Ref.[12] ) show that well-

known in the theory of optical range spectral line broadening Foley law Га ~|∆| ( 

see, for example, [6] ) is incorrect for the spectral lines of transitions between 

components of the hyperfine structure. At least this fact is absolutely obvious for 

the thallium atom.  

In any case we suppose that more detailed experimental studying are to be 

very actual and important especially a light of availability of the theoretical data 

on temperature dependences of the thallium hyperfine line collisional shift and 

broadening.  Obviously, this is also very actual from the point of view of the 

construction the thallium quantum frequency measure, as well as studying a role 

of the weak interactions in atomic physics and physics of collisions (see, for 

example, [6,10]). 

Further  we present the results of our studying hyperfine line collisional 

shift for  alkali atoms (rubidium and caesium) in the atmosphere of the helium 

gas. In Table 4.8 we present our data on the van der Waals constants in the 

interaction potential for alkali Rb, Cs atoms with inert gas atoms  Ne, Kr, Xe, 

and also available in the literature experimental data [10,11].  

In Table 4.9 we list the results of our calculating (in atomic units) 

interatomic potentials, local shifts (R) for the pair Cs-He.  

Table 4.8   

The van der Waals constants (in atomic units.) for alkali atoms, interacting with 

inert gas atoms Ne, Kr, Xe (see text). 

Pair of atoms Our theory Experiment 

Rb-He 42 41 
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Rb –Kr 484 470 

Rb –Xe 758 - 

Cs-He 52 50 

Cs-Kr 582 570 

Cs-Xe 905 - 

 

Table 4.9   

The interatomic potential (10
5
) and local (R) shift (10

5
) for Cs-He pair (in 

atomic units; see text) 

R (R) U (R) 

8 4280 610 

9 2845 336 

10 1890 169 

11 955 77 

12 482 32 

13 251 12.8 

14 113 4.1 

15 59 1.9 

Noteworthy is the fact that an accuracy of the experimental data for the 

van der Waals constants does not exceed 10 % for heavy alkali atoms. 

Calculation has shown that the optimization of the relativistic orbitals basis and 

accounting for the exchange-correlation effects seem to be very important for 

obtaining adequate accuracy of the description of the constants.  

In Table 4.10 and 4.11 we present our theoretical results for the hyperfine 

line observed shift fp (1/Torr) in a case of the Rb-He and Cs-He pairs. The 

experimental and alternative theoretical results by Batygin et al [11] for fp are 

listed too. At present time there are no precise experimental data for a wide 

interval of temperatures in the literature.  

Table 4.10   

The observed f (10
-9

 1/Torr) shifts for the systems of the Cs-He and 

corresponding theoretical data (see text). 

T, K Experi- 

ment 

 

Our  

theory 

Theory 
a
 

 [11] 

 

Theory 
b
 

[11] 

 

Theory 
c
 

[11] 

 
223 - 178 164 142 169 

323 135 137 126 109 129 

423 - 123 111 96 114 

523 - 112 100 85 103 
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623 - 105 94 78 96 

723 - 98 - - - 

823 - 92 - - - 

Note:
a
 –calculation with using the He wave functions in the Clementi-

Rothaane approximation; 
b
 – calculation with using the He wave functions in 

the Z-approximation; 
c
 –calculation with using the He wave functions in the 

Löwdin approximation; 

 

The theoretical data from Refs. [11] are obtained on the basis of calculation 

within the exchange perturbation theory with using the He wave functions in the 

Clementi-Rothaane approximation [42] (column: Theory
a
),  and in the Z-

approximation (column: Theory
b
), and in the Löwdin approximation (column: 

Theory
c
). The important feature of the developed optimized perturbation theory 

approach is using the optimized relativistic orbitals basis, an accurate accounting 

for the exchange-correlation and continuum pressure effects with using the 

effective functionals [18,34].  

The difference between the obtained theoretical data and other alternative 

calculation results can be explained by using different perturbation theory 

schemes and different approximations for calculating the electron wave 

functions of heavy atoms. It is obvious that the correct account for the 

relativistic and exchange-correlation and continuum pressure effects will be 

necessary for an adequate description of the energetic and spectral properties of 

the heavy atoms in an atmosphere of the heavy inert gases (for example, such as 

Xe).   

Table 4.11   

The observed f (10
-9

 1/Torr) shifts for the systems of Rb-Не and corresponding 

theoretical data (see text). 

T, K Experi- 

ment 

 

Our  

theory 

Theory 
a
 

 [11] 

 

Theory 
b
 

[11] 

 

Theory 
c
 

[11] 

 
223 - 113 79 67 81 

323 105 101 73 56 75 

423 - 89 62 48 64 

523 - 80 55 43 56 

623 - 73 50 38 50 

723 - 71 47 36 47 
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823 - 69 - - - 

Note:
a
 –calculation with using the He wave functions in the Clementi-

Rothaane approximation; 
b
 – calculation with using the He wave functions in 

the Z-approximation; 
c
 –calculation with using the He wave functions in the 

Löwdin approximation; 

 

 

4.5 Conclusion 

 

In this chapter a brief review of the experimental and theoretical works on 

the hyperfine structure line collision shifts for heavy atoms in an atmosphere of 

the buffer inert gases is given. A new, consistent relativistic perturbation theory 

combined with the exchange perturbation theory, is presented and applied to 

calculating the interatomic potentials, van der Waals constants, hyperfine line 

collision shift and broadening for some heavy atoms in an atmosphere of the 

buffer inert gases. It should be noted that the presented approach can be 

naturally generalized in order to describe the energy and spectral characteristics 

of other atomic systems and buffer mediums.  

The calculation results on the hyperfine line collision shift and broadening 

for the alkali (Rb, Cs), thallium, and ytterbium atoms in an atmosphere of the 

inert gas (He, Kr, Xe) are listed and compared with available alternative 

theoretical and experimental results. The obtained data for the ( Га/р) / fр ratio 

allowed to confirm that the well-known Foley law Га ~ fр in the theory of optical 

range spectral line broadening is incorrect for the spectral lines of transitions 

between components of the hyperfine structure of the heavy multielectron 

atoms.   

The studying hyperfine structure line collision shifts and widths for 

different heavy atomic systems in the buffer gases opens new prospects in the 

bridging of quantum chemistry and atomic and molecular spectroscopy and 

physics of collisions.  

These possibilities are significantly strengthened by a modern 

experimental laser and other technologies [10,50-56]. Really, new experimental 

technologies in physics of collisions may provide a measurement of the atomic 

and molecular collision spectral parameters with very high accuracy. 
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Chapter 5 

THE GREEN’S FUNCTIONS AND DENSITY UNCTIONAL APPROACH  

TO VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON 

SPECTRA OF MOLECULES: REVIEW OF METHOD 

 

5.1 Introduction 

 

We present the basis‘s of the new combined theoretical approach to 

vibrational structure in photoelectron spectra of molecules. The approach is 

based on the Green‘s function method, which generalizes the Cederbaum-

Domske formalism, and quasiparticle density functional theory. It generalizes 

the known Green‘s function approach by It is presented a new procedure for 

determination of the  density of states, which describe the vibrational structure 

in molecular photoelectron spectra. 

A number of phenomena, provided by interaction of electrons with 

vibrations of the atomic nuclei in molecules or solids under availability of of the 

electron states degeneration is usually called as the Jahn-Teller effect. This 

interaction may lead to  local deformations, which are the reason of the 

structural phase transitions in the solids (statical Jahn-Teller effect)or 
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appearance of the connected electron-vibrational  states (a dynamical Jahn-

Teller effect) [1-4]. Indeed, the physics of the interaction of electrons with 

vibrations of the atomic nuclei in molecules or solids is more richer (c.f.[1-

111]). One could mention here a great field of the resonant collisions of 

electrons with molecules, which are one of the most efficient pathways for the 

transfer of energy from electronic to nuclear motion. While the corresponding  

theory has been refined over the years with sophisticated and elaborate non-local 

treatments of the reaction dynamics, such studies have for the most part treated 

the nuclear dynamics in one dimension. This situation has resulted from the fact 

that, as the field of electron-molecule scattering developed, both experimentally 

and theoretically, the phenomena of vibrational excitation and dissociative 

attachment were first understood for diatomics, and it seemed natural to extend 

that understanding to polyatomic molecules using 1-D or single-mode models of 

nuclear motion. However a series of experimental measurements of these 

phenomena in small polyatomic molecules have proven to be uninterpretable in 

terms of atomic motion with single degree of freedom. Reader can find more 

details about this topic in the recent paper by Rescigno et al [4].  

          In last several decades quantum chemistry methods has been refined with 

a sophisticated and comprehensive approaches of the correct interelectron 

correlations and electron-nuclear dynamics treatments [9-49]. Very interesting 

quote has been indicated by Bartlett and Musiał and earlier by Wilson: ―Ab 

initio quantum chemistry is an emerging computational area that is fifty years 

ahead of lattice gauge theory and a rich source of new ideas and new 

approaches to the computation of many fermion systems” [26]. Following to ref. 

[26] we repeat that driving these developments are the types of problems 

addressed by quantum chemists, as shown in Fig. 5.1.  Primary among these are 

potential-energy surfaces (PES) which describe the behavior of the electronic 

energy with respect to the locations of the nuclei, subject to the underlying 

Born-Oppenheimer or clamped nuclei approximation. From the ground- and 

excited-state wave functions one could in principle obtain all properties that 

arise from a solution to vibrational Schrödinger equation that gives the 

frequencies and with  derivatives of the dipole moment, the infrared intensities 

[26-39].  
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Figure 1. The nature of quantum chemical problems (from ref. [26]). 

Electronic excited states are also accessible along with electronic and 

photo-electron spectra. The properties that arise from the one-particle density 

matrix, such as dipole moments, hyperfine coupling constants, and electric-field 

gradients, are readily available. From even higher-order electric-field 

derivatives, one obtains hyperpolarizabilities, which determine nonlinear optical 

behavior. From derivatives relative to atomic displacements in molecules, one 

obtains anharmonic effects on vibrational-rotational spectra. In result , one could 

mention that a main objective is an accurate solution of the Schrödinger 

equation for molecules composed of comparatively light elements.  

As it is often takes a place, the old multi-body quantum theoretical 

approaches, which have been primarily developed in a theory of superfluity and 

superconductivity, and generally speaking in a theory of solids, became by the 

powerful tools for developing new conceptions in molecular calculations [50-

65]. Many of them offers a synthesis of cluster expansions, Brueckner‘s 

summation of ladder diagrams, the summation of ring diagrams Gell-Mann and 

an infinite-order generalization of many-body perturbation theory MBPT (Kelly, 

1969; Bartlett and Silver, 1974a, 1976. Using quantum-field methods in 
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molecular theory allowed to obtain a very powerful approach for correlation in 

many-electron systems. Only with this property are applications to polymers, 

solids, or the electron gas possible, and, even for small molecules, its effects are 

numerically quite significant. Configuration interaction methods, long the focus 

of the correlation problem in quantum chemistry Shavitt, 1998, do not, in 

general, have this property which is responsible for the emphasis on the coupled 

cluster theory and its multi-body perturbation theory approximations (Kelly, 

1969; Bartlett and Silver, 1974a, 1974b; Pople et al., 1976) in chemistry. For 

more details, the history of coupled cluster theory is best told from the viewpoint 

of some of its principal developers (look review [26]).  

 The Green‘s method is very well known in a quantum theory of field, 

quantum electrodynamics , quantum theory of solids (c.f.[61-63]). Naturally, an 

attractive idea was to use it in the molecular calculations. Returning to problem 

of description of the vibrational structure in photoelectron spectra of molecules, 

it is easily understand that this approach has great perspective as it was shown 

by Cederbaum et al (c.f.[65-68]).  One could note that the experimental 

photoelectron (PE) spectra usually show a pronounced vibrational structure. 

Many papers have been devoted to treatment of the vibrational spectra by 

construction of potential curves for the reference molecule (the molecule which 

is to be ionized) and the molecular ion.  

Usually the electronic Green‘s function is defined for fixed position of the 

nuclei. As result, only vertical ionization potentials (V.I.P.‘s) can be calculated 

[65]. The cited method, however, requires as input data the geometries, 

frequencies, and potential functions of the initial and final states. Since in most 

cases at least a part of these data are unavailable, the calculations have been 

carried out with the objective of determining the missing data by comparison 

with experiment.  

Naturally, the Franck-Condon factors are functions of the derivatives of 

the difference between the potential curves of the initial and final states with 

respect to the normal coordinates. One could agree here that highly accurate 

calculations are necessary to obtain good results with the above methods. To 

avoid this difficulty and to gain additional information about the ionization 

process, Cederbaum et al [65-68] extended the Green‘s functions approach to 

include the vibrational effects and showed that the Green‘s functions method 

allowed the ab initio calculation of the intensity distribution of the vibrational 
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lines, of the vibrational frequencies of the reference molecule and its ions, and 

of geometry shifts due to ionization and particle attachment. Besides, a great 

advancement here is connected with a possibility of the quite exact calculation 

of ionization potentials (I.P.‘s) for molecules.  

According to ref.[65], starting from Hartree-Fock (HF) calculation [71,72] 

the electronic Green‘s functions have been calculated applying a many-body 

perturbation expansion. In this method the Koopmans‘ defect, i.e., the difference 

between the I.P. and the value derived from the Koopmans‘ theorem, is 

calculated directly, avoiding the usual subtraction of large numbers of roughly 

equal magnitude.  

Further let us remember that for larger molecules and solids, far more 

approximate but more easily applied methods such as density-functional theory

 (DFT) [40-42] or from the wave-function world the simplest correlated 

model MBPT are preferred. Indeed, in the last decades DFT theory became by a 

great, quickly developing field of the modern quantum computational chemistry 

of atoms, molecules, solids.  

Naturally, this approach does not allow to reach a spectroscopic accuracy 

in description of the different molecular properties, nevertheless, the key idea is 

very attractive and can be used in new combined theoretical approaches.  

 Here we present the basis‘s of the new combined theoretical approach to 

vibrational structure in photoelectron spectra of molecules. The approach is 

based on the Green‘s function method and Fermi-liquid DFT formalism [80-86]. 

It generalizes the known Green‘s function approach by Cederbaum-Domcke (we 

use this version as a starting basis).  

The density of states, which describe the vibrational structure in 

molecular photoelectron spectra, is calculated with the help of combined DFT-

Green‘s-functions approach. In addition to exact solution of one-bode problem 

different approaches to calculate reorganization and many-body effects are 

presented. In all cases no data about the molecular ion are needed and all 

transitions except those between linear and bent configurations are included. 

The density of states is well approximated by using only the first order coupling 

constants in the one-particle approximation.  

It is important that the calculational procedure is significantly simplified 

with using the quasiparticle DFT formalism Thus quite simple calculation 

becomes a powerful tool in interpreting the vibrational structure of 
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photoelectron spectra for different molecular systems. 

 

5.2 The combined Green’s functions and density functional approach: 

The Hamiltonian of the system and density of states in one –body solution 

 

According to [65], the quantity which contains the information about the 

ionization potentials and the molecular vibrational structure due to quick 

ionization is the density of occupied states
9
: 
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where 0  is the exact ground state wavefunction of the reference molecule and  

)(tak is an electron destruction operator, both in the Heisenberg picture. For 

particle attachment the quantity of interest is the density of unoccupied states: 
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Usually in order to calculate the value (1) states for photon absorption one 

should express the Hamiltonian of the molecule in the second quantization 

formalism. The corresponding Hamiltonian is as follows: 

 

),()/()/( XxUXTxTH   ,                   (5.3) 

 

where T is the kinetic energy operator for the electrons, T  is the kinetic energy 

operator for the nuclei, and U represents the interaction 

 

),()()(),( XxUXUxUXxU   ,              (5.4) 

 

where x denotes electron coordinates, X denotes nuclear coordinates, 

U represents  the Coulomb interaction between electrons, etc.Below we follow 

to original version of the Cederbaum-Domske approach to vibrational structure 

of the molecular spectra. Further the following field operator is usually 

introduced: 
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),(),,(),,(  RaRxxR ii

i

                          (5.5) 

 

where the фi are Hartre-Forck (HF) one–particle functions and the ai are 

destruction operators for a HF particle in the state described by the subscript i. 

Fixing )( 0  , the Hamiltonian in the occupation number representation is 

given by [65] 

)/(),(),( 00 RTRURHH    ,                        (5.6) 
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The )(Ri are the one-particle HF energies and f denotes the set of orbitals 

occupied in the HF ground state. As usually in the adiabatic approximation one 

could write the eigenfunctions to H  as products 
NE RRx 0,, 

 
,and further 

expand )(Ri , )(RVijkl , and ),( RU NN  about R0 leaving the operators ia and 

t

ia unchanged: 
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where M is the number of normal coordinates. 
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Choosing R0 as the equilibrium geometry on the HF level and introducing 

dimensionless normal coordinates Qs one can write the following Hamiltonian 

(the subscript 0 stands for R0): 
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where the index set v1 means that at least  k  and l or i  and j are unoccupied, 

v2 that at most one of the orbitals is unoccupied, and  v3  that  k  and j or l and  

j  are unoccupied.   
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Besides, here for simplicity all terms leading to anharmonicities are 

neglected. The s are the HF frequencies and the sb   and t

sb  are destruction and 

creation operators for vibrational quanta defined by 
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The interpretation of the above Hamiltonian is given in ref. [3].  

The HF-single-particle component 0H  of the Hamiltonian (9) is as 

follows: 
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Correspondingly in the one-particle picture the density of occupied states is 

given by [65] 
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and the density of unoccupied states by 
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Here 0  
is the product of the electronic and vibrational ground states, i.e., 

 000 , where 0  is the ground state to the HF operator 

 0     and)(       0 i

t

ii aaRє is the state containing no vibrational quantum, 

i.e., 00 sb     for  all  s.  

From definitions (5.19) and (5.20) it follows immediately that [65] 
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As a first step in the evaluation of Eg. (22) new operators                 
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with real coefficients slsl

21   ,   were introduced in ref. [65]. The coefficients 

slsl

21   ,   are now determined in such a way that 0

~
H , expressed in the new 

operators, takes the form 
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Inserting the inverse transformation 
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in Eg. (23) and comparing with Eg. (28) we obtain the equations 
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Equation (5.12) and (5.13) together with Eqs. (5.10) and (5.11) constitute 

a system of 2M
2
 independent equations for the  2M

2
 unknown coefficients 

slsl

21   ,  . Solution of this system yields the change in normal coordinates in terms 

of the coupling constants 'ss . Equations (32)-(32) determine the vibrational 

frequencies s̂ of tion, the new coupling parameters sĝ and the constant k. 

The next unitary operator    
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diagonalizes 0

~
H  if   

                                                           
̂/ˆ ll gf 

                                      (5.35) 

is chosen: 
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Then the equation (14) can be rewritten as follows [13]:
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or using the symbol n̂
 
for  states belonging to operators  

                                                       nnnccc ss

t

ss
ˆˆ i.e., , ,                        (5.39) 

the density of states takes the form 
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5.3  The Cederbaum-Domske approach to the many-body problem 

 

Below we give the Cederbaum-Domske perturbation theory approach to 

ab initio calculation of  frequencies, geometry shifts, and Franck-Condon factors 

starting from the one-particle picture discussed above.  

In a diagrammatic method in order  to obtain the function )(єNk  one 

should calculate the Green‘s function )(' єGkk first: 
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(5.41) 

 

where T is Wick‘s time ordering operator and the function )(єNk then follows 
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from relation 

 

)(Im)(  aiєGaєN kkk  ,                (5.42) 

 ksignєa  , where  is a positive infinitesimal.  

Choosing the unperturbed Hamiltonian 0H  to be 
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one finds for the corresponding Green‘s functions 
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The Dyson equation is 
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'' kkkkkk

k

kkkk GGGG             (5.45) 

 

relates the Green‘s functions to the free ones introducing a new function 

)('' єkk called the (proper) self-energy part.  

In in order to calculate 'kk , a well-known diagrammatic method is used. 

It is useful to remind that the sum of Feynman diagrams leading to the self-

energy part is shown in Fig. 1. All notations are standard.  
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Figure 5.1. The sum of diagrams contributing to the self-energy part  

 

The one-body problem treated above results in the exact solution of the 

Dyson equation with the self-energy part given by the infinite number of 

diagrams shown in the first row of Fig. 1 and the corresponding Green's function 

is as follows [65]:  
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The corresponding Dyson-like equation is as follows:  
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where kkÔ  , is equal to kk  , less the diagrams of the first row in Fig. 5.1.    

The perturbation expansion of Ф is shown in Fig. 2 where OB

kkiG  , is 

symbolized by a double solid line.    

 

 
Figure 5.2. Perturbation expansion of Фkk 
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The expression for the sum of the first two diagrams appearing in Fig. 5.2 

are written by a standard way [65]:  
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The direct method for calculation of Nk() as the imaginary part of the 

corresponding Green's function implicitly includes the determination of the V. I. 

P. s of the reference molecule and then of Nk   .  The zeros of the functions 

 

               
    kop

kD  ,             (5.50) 

 

where  kop  denotes the kth eigenvalue of the diagonal matrix of the one-

particle energies added to the matrix of the self-energy part, are the negative V. 

I. P. 's for a given geometry.   

Further it is easily to write:   
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Expanding the ionic energy 1N

kE about the equilibrium geometry of the reference 

molecule in a power series of the normal coordinates of this molecule leads to a 

set of linear equations in the unknown normal coordinate shifts δQS, [65] 
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where s  are frequencies of the reference molecule.  

The new coupling constants are then: 
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Further it can be shown [65-67] that the coupling constants lg  and lly   are 

calculated by the well-known perturbation expansion of the self-energy part 

using the Hamiltonian HEN of Eq. (6).   In second order one obtains: 
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and the coupling constant gl, can be written as 
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where  
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It is suitable to use further the pole strength of the corresponding Green's 

function 
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Below we firstly give the DFT definition of the pole strength 

corresponding to V. I. P.'s and confirm earlier data [65]:  

pk≈0,8-0,95. 

The closeness of  pk to 1 in fact means that a role of the multi-body 

correlation effects is small ( 0

ll gg  ).   

The above presented results can be usefully treated in the terms of the 

correlation and reorganization effects. Usually it is introduced the following 

expression for an I.P.: 
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(5.64) 

 

The first correction term is due to reorganization, the remaining correction 

terms are due to correlation effects.  Then the coupling constant gl, can be 

written as 

 

 
 

 
 

 

 
 

  
































































 













Fj

kpkq

Fj
Fqp qpik

kjqpkjpq

ki

Flj
Fi ljik

kiljkijl

kj

kkkj

ll

VV

VV

V
gg





11

1

2

1
1

,
,

2

2

,

2

2

2

2

0

                      



 131 

                                                                                                                       

(5.65) 

 

The second coupling constant can be written as 
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Notice that  0

ll
 can be defined analogously to 0

lg .    

 

 

5.4 Quasiparticle Fermi-liquid density functional theory 

 

In this chapter we present the  quasiparticle Fermi-liquid version of the 

DFT theory, starting from the problem of searching for the optimal one-electron 

representation and following to refs. [80-87,111].  Two  decades  ago  Davidson  

had  pointed   the   principal disadvantages of the traditional representation 

based on the self-consistent field  approach  and  suggested  the  optimal  

"natural orbitals"  representation   [22,23].   Nevertheless   there   remain 

insurmountable calculational difficulties in  the  realization  of the Davidson 

program.   

One  of the  simplified  recipes  represents, for  example,   the   Kohn-

Sham DFT theory [40-42].  In ref. [111] the QED DFT version, based  on  the 

formally exact QED perturbation theory (PT), has been developed and a new 

approach to construction of the optimized one-quasiparticle representation has 

been proposed. In fact this approach is based on the energy approach, which is  

well known  in  the theory of radiative  and  non-radiative  decay  of  the quasi-

stationary states for  multielectron systems. The energy approach uses the 

adiabatic Gell-Mann and Low formula [59] for the  energy shift E with 

electrodynamic scattering  matrices. In a modern theory of  molecules there is a 

number of tasks, where an accurate account for the complex exchange-

correlation effects, including the continuum pressure, energy dependence of a 

mass operator etc., is critically important. It includes also the calculation of the 

vibration structure for the molecular systems. In this case it can be very useful 

the quasiparticle DFT [80-87].  
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In order to get the master equations and construct an optimal basis of the 

one-particle wave functions   one could use the Green‘s function method. Let 

us define the one-particle Hamiltonian for functions   so that the Greens‘ 

function pole part in the (  ) representation is diagonal on  . Starting equation 

is the Dyson equation for multi-electron (for example atom or molecule):  

 

   )(),,(),,()/2/( ////2 xxxxdxxxGrZp       (5.67) 

 

where ),( srx   are the spatial and spin variables,  is the mass operator; Z , as 

usually, a charge of a nucleus (nuclei) « », G is the Green‘s function. In the 

representation of auxiliary functions /
   the equation (5.67) has the following 

form: 
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where 1  is an index of summation. It is natural to choose   so that the 

following expression will be diagonal: 
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


    ExxrZp                (5.69) 

 

Then the Green‘s function is diagonal on  : 

 

)](/[1,//  
EGGG                           (5.70) 

 

and the functions /
 , which diagonalizes G , satisfy to equation as follows: : 
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            (5.71) 

 

One could introduce the mixed representation for a mass operator as follows:  
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111 ])(exp[),,(),,( drprrixxpx                            (5.72) 

 

Then equation (5.71) with account for of the expression (5.72) can be 

written as follows:  
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),(]),,(/2/[

/

/2










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xpxrZp



 
  (5.73) 

    

It can be shown that an operator ivp   in (5.67) acts on functions which 

are on the right of  ),,( px . So, in order to find the one-particle energies, 

defined by the pole part of the Green‘s function G, it is sufficient to know the 

functions /
  under   . The Greens‘ function pole part is as follows:  

 

)/(// 




 iaG                      (5.74) 

where               
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

 
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  EEEa  

 





  |}),,(/2/{)( 2   pxrZpE                     (5.75) 

 

The functions ),()( //
  xx   are satisfying to following equation:  

 

)(]),,(/2/[ 2 xpxrZp 



                        (5.76) 

 

Introducing an expansion for self-energy part   into set on degrees 

22,, FF ppx   (here F  and Fp  are the Fermi energy and pulse 

correspondingly): 
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then equation (5.76) is rewritten as follows: 
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  (5.77) 

 

The functions   in (77) are orthogonal with a weight: 

k
-1

= ]/1[1  a . 

Now one can introduce the wave functions of the quasiparticles:  

 

   2/1a , 

 

which are, as usually, orthogonal with weight 1.  

For complete definition of }{   it should be determined the values 

  /,/, 2
0 p . Naturally, the equations (5.77) can be obtained on the basis 

of the variational principle, if we start from a Lagrangian of a system  qL  

(density functional). It should be defined as a functional of the following 

quasiparticle densities:  
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      (5.78) 

 

The densities 0  and 1  are similar to the HF electron density    ( a ) and 

kinetical energy density correspondingly; the density 2  has no an analog in the 

HFock or standard Kohn-Sham theory and appears as result of account for the 

energy dependence of the mass operator  . Lagrangian qL   can be written as 
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sum of a free Lagrangian and Lagrangian of interaction:  

 

int0
qqq LLL  , 

 

where a free Lagrangian 0
qL  has a standard form:  

 




     )/(*0
pq tindrL ,                    (5.79) 

 

And an interaction Lagrangian is defined in the form, which is characteristic for 

a standard (Kohn-Sham) density functional theory (as a sum of the Coulomb and 

exchange-correlation terms), however, it takes into account for the energy 

dependence of a mass operator : 

 

212121

2

0,

int )()(),(
2

1
drdrrrrrFLL ki

ki

ikKq 


            (5.80) 

 

where ik  are some constants (look below), F is an effective potential of the 

exchange-correlation interaction. Let us explain here the essence of the 

introduced constants. Indeed, in some degree they have the same essence as  

similar constants in well-known Landau Fermi  liquid theory and  Migdal finite 

Fermi-systems theory. The Coulomb interaction part KL looks as follows:  
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





 




               (5.81) 

 

where   /2
.   

Regarding the exchange-correlation potential F, it should be noted the 

there are many possible approximations (directly in the DFT and its modern 

generalizations). Earlier in our atomic and molecular theories we use the 

following form:  
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                   )(3/1)0(3/1)0( rdr cc            (5.82) 

 

where X is the numerical coefficient.  

It has been obtained in the refs. [80-87] on the basis of calculating the 

Rayleigh-Schrödinger perturbation theory Feynman diagrams of the second and 

higher order (so called polarization diagrams) in the Thomas-Fermi 

approximation. The corresponding relativistic generalization of the potential 

(5.82) looks as follows [76]: 
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2/123/2)0(2 }/)](3[1{)( crr c  , 

where c is the light velocity.  

Another alternative expression has been introduced by Victor- Laughlin-

Taylor (c.f. refs. [24,25]): 
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   (5.84) 

 

where 1p are the Legander polynomials, )/(cos 212112 rrrr


 .   

In the local density approximation in the density functional the potential F 

can be expressed through the exchange-correlation pseudo-potential XCV  as 
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follows [87]:  

 

).(/)( 2102,1 rrVrrF XC                          (5.85) 

 

Further, one can get the following expressions for 1
int / qi L  :  
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(5.86) 

 

Here KV  is the Coulomb term  (look above), 
ex
0  is the exchange term. Using 

the known canonical relationship: 

 

qqqq LLLH    // **  

 

after some transformations one can receive the expression for the quasiparticle 

Hamiltonian, which is corresponding to a Lagrangian qL : 
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   (5.87) 

 

Further let us give the corresponding comments regarding the constants 

ik.  

First of all, it is obvious that the terms with constants 22121101 ,,,   

give omitted contribution to the energy functional (at least in the zeroth 

approximation in comparison with others), so they can be equal to zero. The 

value for a constant 00  in some degree is dependent upon the definition of the 

potential XCV .  

If as XCV  it is use one of the correct exchange-correlation potentials from 

the standard density functional theory, then without losing a community of 

statement, the constant 00  can be equal to 1. The constant 02  can be in 

principle calculated by analytical way, but it is very useful to remember its 

connection with a spectroscopic factor spF of atomic or molecular system (it is 

usually defined from the ionization cross-sections) [60]: 

 

 












  kkksp PIVF .)..(1                               (5.88) 

 

The term  /  is defined above.   

It is easily to understand the this definition is in fact corresponding to the 

pole strength of the corresponding Green's function [62].  

In further calculation as potential XCV  we use the exchange-correlation 

pseudo-potential which contains the correlation (Gunnarsson-Lundqvist) 

potential and relativistic exchange Kohn-Sham one [40-42]:  

 

                          )](376,181ln[0333,0)()()( 3/1 rrVfrV XXC          (5.89)  
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where          

3/12 )](3)[/1( rVX    

 

is the Kohn-Sham exchange potential, c/]3[ 3/12  , and function )(f  is as 

follows: 

 

2/1])1(2/[])1(ln[3)( 2/122/12  f            (5.90) 

 

Using the above written formula, one can simply define values (61), (88).  

As example in table 1 we present our calculational data for spectroscopic factors 

of some atoms together with available experimental data and results, obtained in 

the Hartree-Fock theory plus random phase approximation. 

Further, let us give a short comment regarding an universality of the 

constants ik. From the point of view of the analogous universality of the 

constants in the  well-known Landau Fermi-liquid theory and Migdal finite 

Fermi-systems theory [62]. Indeed, as we know now, the entire universality of 

the constants in the last theories is absent, though a range of its changing is quite 

little.  

Without a detailed explanation, we note here that the corresponding 

constants in our theory possess the same universality as ones in the Landau 

Fermi-liquid theory and  Migdal finite Fermi-systems theory. More detailed 

explanation requires a careful check.  

Further it is obvious that omitting the energy dependence of the mass 

operator (i.e. supposing  002  ) the quasiparticle density functional theory 

can be resulted in the standard Kohn-Sham theory.  

 

Table 5.1. 

Spectroscopic factors of the external ns
2
 shells of some atoms and ions 

 

Atom, ion Терм N Fsp 
*

expF RPAF
~
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Ar 1S 3 0,60 
0,56 

0,70 

TI 
(IV) 

1S 3 0,50 
0,34 

0,60 

Xe 1S 5 0,36  

TI 2P 6 0,36  

Pb
+ 

2P 6 0,33  

Pb 3P 6 0,34  

Pb 1D 6 0,34  

Pb 1S 6 0,34  

Bi
+
 3P 6 0,32  

Bi 4S 6 0,33  

Bi 2D 6 0,33  

Bi 2P 6 0,33  

Po
+
 4S 6 0,31  

Po 3P 6 0,31  

Po 1D 6 0,31  

Po 
1
S 6 0,31  

As
+
 3P 6 0,30  

As 2P 6 0,30  

As
-
 1S 6 0,31  

Rn
+
 2P 6 0,29  

 

 

 

 

 

 

Table 5.1 (continuation). 

Spectroscopic factors of the external ns
2
 shells of some atoms and ions 

Rn 1S 6 0,29  

Fr
+
 1S 6 0,28  



 141 

Fr 2S 6 0,28  

Ra 1S 7 0,43  

Ac 2D 7 0,41  

Ac 2F 7 0,42  

Th 3H 7 0,41  

Th 3F 7 0,42  

Pa 4I 7 0,42  

U 5L 7 0,42  

Note: *

expF - experimental value of  spectroscopic factor; RPAF
~

 is the value, 

obtained in the random phase approximation with exchange.  

 

In this essence the presented approach to definition of the functions basis }{   

of a Hamiltonian 
qH  can be treated as an improved in comparison with similar 

basises of other 1-particle representations (HF, Hatree-Fock-Slater, Kohn-Sham 

etc.). Naturally, this advancement can be manifested during studying those 

properties of the multi-electron systems, when accurate account for complex 

exchange-correlation effects, including continuum pressure, energy dependence 

of mass operator etc., is critically important. 

  

5.5 The application of the combined Green’s function method and 

quasiparticle DFT approach to diatomics 

 

We choose the diatomic molecules of N2, CO (and some others) for 

application of the combined  Green‘s function method and quasiparticle DFT 

approach. In ref. [65] it has been shown that the diatomics spectra can be in 

principle reproduced by applying a one-particle theory with account of the 

correlation and reorganization effects. The corresponding coupling constants 

depend on the balance of these effects.   The nitrogen molecule has been 

naturally discussed in many papers.  The valence V. I. P. 's of N2 have been 

calculated [61,62,65] by the method of Green's functions and therefore the pole 

strengths pk are known and the mean values qk can be estimated. 

In should be reminded that the N2 molecule is the classical example where 

the known Koopmans' theorem even fails in reproducing the sequence of the V. 

I. P. 's in the PE spectrum.   From the calculation of Cade et al.[71,72] one finds 

that including reorganization the V. I. P. 's assigned by g and u improve while 
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for the π V. I. P. the good agreement between the Koopmans value and the 

experimental one is lost, leading to the same sequence as given by Koopmans' 

theorem.   The above-mentioned Green's functions calculation which takes 

account of reorganization and correlation effects leads to the experimental 

sequence of V. I. P.'s.  In Table 2 the experimental V. I. P. 's (a), the one-particle 

HF energies (b), the V. I. P. 's calculated by Koopmans' theorem plus the 

contribution of reorganization (c), the V. I. P. 's calculated with Green's 

functions method (d), the combined Green‘s functions and DFT approach (e) 

and corresponding pole strengths (d,e) are listed.   

 

Table 5.2.  

The experimental and calculated V. I. P.'s (in eV) of N2. Rk is the contribution of 

reorganization; pk stands for pole strength. 

 

O
rb

ital 

Exp
 

VIP 

a 

-
b

k   ckk R  
Calc

d 

V.I.P.
,
s

 

d

k  
Calc

e 

V.I.P.
,
s

 

e

k  

  3 g  15,6 17,4 16,0 15,5 0,9 15,5 0,9 

  1 u  16,9 17,1 15,7 16,8 0,9 16,8 0,9 

  2 u  18,8 20,9 19,9 18,6 0,9 18,6 0,8 

 

Therefore, the results, obtained within the Green functions approach and 

combined method are very much close. Taking into account a simplification of 

the calculational procedure within the DFT approach, the generalized 

Cederbaum et al theory  looks more attractive else.   

As it‘s known, of the three bands in the experimental low-energy spectrum of N2 

molecule  (Fig. 3), only the lπu band exhibits a strong vibrational structure. 

When a change of frequency due to ionization is small, the density of states can 

be well approximated using only one parameter g: 
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                (5.70) 

  22 
 gS  
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In case if the frequencies change considerably, the intensity distribution of the 

most intensive lines can analogously be well approximated by an effective 

parameter S. In fig.3 the experimental and calculated photoelectron spectra for 

the N2 molecule are presented.  

 
Figure 5.3. Experimental [65]and calculated PE spectra N2; Uppermost spectrum 

is calculated with S
0
 and Eq. (70). The middle spectrum is calculated with S 

values from (62) (see text).  

The uppermost spectrum is calculated with S
0
 (i.e. the constant S 

calculated with g
0
 ) and Eq. (5.70) [13]. The middle spectrum is calculated with 

values of S from Eq. (5.62).  It is important to note that the original Green‘s 

functions and combined Green functions +DFT approach coincide in the scale of 
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the figure. In a whole the agreement between the calculated spectrum (corrected 

g ) and the experimental one is improved. As another example, the molecule CO 

can be considered. 

The experimental and calculated photoelectron spectra for CO molecule 

are listed in Fig.4. One can see quite physically reasonable agreement between 

experiment and theory. The original Green‘s functions [13] and combined 

Green‘s functions +DFT approach practically coincide.  

 

 
Figure 5.4. The experimental [65] and calculated photoelectron spectra of CO. 

The upper spectrum is calculated with S
0
 and Eq. (70) (see text). 

On inclusion of the anharmonicites it should be mentioned that a theory can be 

generalized by means a standard normal coordinate expansion of Hamiltonian to 

third and higher orders and correspondingly the theory of the density of states 

functions Nk developed above can easily be generalized too. 
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5.6  Summary 

 

In this chapter it has been presented a new combined theoretical approach 

to vibrational structure in photo-electron spectra of molecules, which  is based 

on the Green‘s function method and DFT [80-87,111]. In fact approach 

presented generalizes the standard Green‘s function approach [65-68]. The 

density of states, which describe the vibrational structure in molecular 

photoelectron spectra, is calculated with the help of combined DFT-Green‘s-

functions approach. It is important that the calculational procedure is 

significantly simplified with using the quasiparticle DFT formalism. 
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