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Introducing Remarks 

 

Numerical methods in quantum geometry and a chaos theory are central 

to modern computing mathematics and quantum physics and chemistry. It 

reflects new requirements that relate to modern mathematics and physics 

training.  

It is well known that the methods of applied mathematics – Quantum 

geometry and Quantum mechanics give a powerful and and efficient tool 

researchers in various fields of science and engineering for mathematical 

modeling of the most difficult tasks. Especially this fact applies to address a 

wide range of problems of modern applied mathematics and computational 

physics. Implementation of new mathematical models on the computer is using 

methods of applied mathematics, which, of course, constantly being improved 

with advances in computer technology. Construction of mathematical model of 

any problem, which is to ensure efficiency and optimality criterion, can be 

obtained quickly through an appropriate effective algorithm. Any reduction of 

problems of mathematical physics or engineering course often reduces to the 

solution of algebraic equations with one or other structure. As a result, most of 

the methods applied mathematics related to reducing the problem to a system of 

algebraic equations and their subsequent resolution.  

In this book we present the key elements of modern quantum geometry 

and quantum mechanics methods, in particular, the elements of Hartree-Fock 

calculation method of energy spectra (eigenvalues and eigenfunctions) for much 

of some electronic systems, crystalline compounds, quasi-one-dimensional 

electronic systems (polyenes and cumulenes) and others. For MSc and PhD 

students of the the specialities: "Applied  Mathematics", "Mathematical Physics" 

etc. 
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Chapter 1. QUANTUM-MECHANICAL STUDIES OF 

QUASI-ONE-DIMENSIONAL ELECTRON SYSTEMS 

 

 

  

 1.1 Introduction 

 

 This chapter gives detailed results and thorough discussion of basic results 

in quantum theory of quasi-one-dimensional electron systems like Polyenes and 

Cumulenes, including partly Polyacetylenes, Polydiacetylenes, and some 

organic crystalline conductors obtained by Kiev quantum chemistry team with 

my direct and consultive or conductive participation in some of the research 

projects below.  

 We begin with local electronic states in long polyene chains in the simple 

tight-binding approximation [1 – 4]. Then will give condensed review of the 

Generalized Hartree – Fock method and its different versions with some 

demonstrative applications to atoms, molecules, and carbon polymers [5]. 

Further we turn to theory of electronic structure of long polyene neutral alternant 

radicals based on the different orbital for different spins SCF method [6]. Then 

we come back to local electronic states in polyene chains with an impurity atom 

using unrestricted Hartree – Fock approach [7]. Further we turn to cumulenes. 

     Here we begin with basics of the π-electronic theory of cumulenes [8, 9]. 

Then long cumulene chains are treated by extended and unrestricted Hartree – 

Fock approaches [10]. Thus, we come close to the basic problem in quantum 

theory of quasi-one-dimensional electronic systems – physical origin of their 

forbidden zone. 

 In connection with this basic and most intriguing problem two results will 

be described in details. In one case using unrestricted Hartree – Fock treatment 

of the Hubbard-type Hamiltonian for long one-dimensional chains two possible 

effects – Peierls instability (bond alternation) and Mott-type electron correlation 
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spin ordering leading to energy gap formation are mutually exclusive [11]. On 

the other hand, it was recently shown that quite sophisticated theory based on 

the varying localized geminals approach predicts coexistence of the Mott and 

Peierls instabilities in real one-dimensional systems [12]. Moreover, it is stated 

that this approach permits to give the answer to the question what mechanism of 

the forbidden gap formation is more essential – the electron correlation (Mott 

instability) or dimerization (Peierls instability). Both treatments despite their 

contradictions  each other will be presented in details. Finally, the summary with  

conclusions and perspectives is given [13].  

1.2 Local Electronic States in Long Polyene Chains 

in the Tight-binding Model 

       

 It is well known that the energy spectrum of π-electrons in the long polyene 

chains has two bands for allowed states – valence and conduction bands 

separated by the forbidden zone of width E  (see e.g. [14]). According to the 

Peierls theorem on nonstability of a 1d-metal with respect to nuclear 

displacement [15], the value E  must be different from zero. It was shown [8, 9, 

16, 17] that the electronic interaction plays an important role in this effect. 

 It is reasonable to ask the following question: how would the energy 

picture change with the introduction of defects into the polyene chain? The 

defects may appear to be due to the heterogeneous atoms in the carbon chain, to 

the substituents of the hydrogen atoms, to the space distortion, etc. In all 

quantum-mechanical models based on the π-electron approximation which take 

account of the interaction of a limited number of the nearest neighbors the 

appearance of the defects is described by the change of certain parameters in the 

effective π-electron Hamiltonian. For the justification of the latter statement see 

e.g. [18, 19]. For a long chain this change might be considered as a local 

perturbation. In particular, the following problem is of interest. How much 
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should the parameters be changed in order to obtain the local states? These are 

the electronic states located outside the allowed bands in the forbidden zone, 

above and below the allowed bands.  

 A general method for solving problems of this type has been worked out by 

Lifshits [20 – 23] in application to vibrations in defective crystals and by Koster 

and Slater [24] in a study of the impurity levels in crystals. The method gives a 

possibility of getting expressions in closed form for the energy and wave 

functions of the local states through the property of unperturbed systems and has 

at least the following three important aspects. 1) It permits a study of the local 

states without determination of the band state properties. 2) One must solve the 

system of equations which has an order not higher than the number of perturbed 

atoms. 3) In certain cases the method opens up the possibility of finding exact 

solutions. In quantum-chemical applications the method was successfully used 

by Koutecky in his work on the theory of chemisorbtion [25, 26].  

 In the present chapter this method is applied to the study of the local states 

in long polyene chains. Wishing to obtain mainly qualitative results in terms of 

simple analytical formulae we restrict ourselves to the nearest neighbor 

orthogonal tight-binding model, known in quantum chemistry also as Hückel 

approximation, taking into account bond alternation. 

1.2.1 General Relations 

 If one is looking for the wave function of the local state as an expansion 

over AOs, n , then we have the following system of equations with the 

expansion coefficients nU :   

 nn n n nn n

n n

H U EU V U   

 

    ,  (1) 

where nnH   and nnV   are matrix elements of the Hamiltonian of the unperturbed 

problem and of the perturbation in the AO’s representation, respectively. 
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Following the procedure developed in [27] for the study of the local vibrations 

in crystals let us introduce the Green function of the Eq. (1)   

 
*( ) ( )

( ) i i
mn

i i

m n
g E

E E

 



 ,  (2) 

where iE  and ( )i m  are the solutions of the unperturbed problem. Considering 

the right-hand side of (1) as a nonhomogenity one concludes that the coefficients 

nU  are the solutions of the following system of equations: 

  
,

( )l lp ps s

p s

U g E V U  .  (3) 

 It is obvious that the sum of the right-hand side of (3) contains sU  only in 

the  case   when  atom  s   is  perturbed.  Therefore,  if  one  substitutes  l   in  the  

left-hand side of (3) by the numbers of the perturbed atoms, one obtains a 

system of linear homogeneous equations, the order of which is equal to the rank 

of the perturbed matrix, whereas the order of the initial system (1) was equal to 

the number of atoms in the chain. The condition of solvability of the new system 

gives us an equation for finding energy of the local states. Thus, our first step is 

to calculate the Green function (2) which we obtain for a long polyene chain 

with and without bond alternation. 

 As it is well known, the wave functions k  and energies kE  of the states of 

the unperturbed chains without bond alternation are (see e.g. [28])    

 
0

2
sin , 2 cos

1
k n k

n

kn E E k
N

    

 , (4) 

where N is the number of atoms in the chain,   is the resonance bond integrals, 

and  

 . ( 1,2,..., )
1

s
k s N

N


 


  

For the corresponding Green function (2) one has 

  0

0

2 sin sin
( )

1 2 cos
mn

k

kn km
g E

N E E k




  
 . (5) 
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Changing the summation in (5) to integration, which for the long chain 

produces an error of the order 1/ N , and calculating the corresponding integral 

we have 

  0 sh
( ) [( 1) ( ) ( )]

sh

m
m n

mn

n e
g E Q E Q E



 


    ,  (5) 

where a step-function   

 
1, 0

( )
0 0

if E
Q E

if E


 


  

has been used. Here we introduced a change in notation 

  0 2 chE E       

and without a loss in generality it is assumed that m n . 

 Let us consider the polyene chain with 2N atoms and alternating bonds 

described by the resonance integrals 1   and 2  and assume that 1 2| | | |  . Then 

the wave functions (1)

k  and (2)

k , and corresponding energies 1( )E k  and 2 ( )E k  are 

  

(1) 1 2
2 2 1 2 2

1
1 2 1 2

2 2

1 0 1 2 1 2

1 sin sin ( 1)
sin ,

2 cos

( ) 2 cos ,

N

k n n

n

kn k n
kn

N k

E k E k

 
  

   

   





  
  

   

   


  (6 ) 

  

(2) 1 2
2 2 1 2 2

1
1 2 1 2

2 2

2 0 1 2 1 2

1 sin sin ( 1)
sin ,

2 cos

( ) 2 cos .

N

k n n

n

kn k n
kn

N k

E k E k

 
  

   

   





  
  

   

   


 (6) 

The values of k  are determined as solutions of the following transcendental 

equation 

  1

2

sin sin ( 1) 0kN k N



   . (7) 

 The functions (1)

k  and their energies 1( )E k  describe the states of the lower 

filled (valence) band, and (2)

k and 2 ( )E k  – the upper empty (conduction) band. 

Both bands have a width 22 | |  and are separated by the forbidden zone   

 1 22 | |E     . 
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 Inserting the corresponding coefficients ( )k m  from ( 6 ) and  (6)  into  (2),  

changing the summation over k  to integration, and summing up over both 

allowed bands, one obtains the following expressions for those Green functions 

which will be used later:   

 
2 ,2

1 2

sh
( ) ( 1)

sh

n
n m

m n

E m e
g E



  


 

  , (8a) 

  1

2 1,2 1 2

1 2

( ) ( 1) [ sh sh( 1) ]
sh

n
n m

m n

e
g E m m



   
  


 

     , (8b) 

  2 1
2 1,2

1 2

( )
2 sh

n n

e
g E

 

  






 , (8c) 

   
(2 1)

2
/2 /2

2 1,2 1 2 12

1 2

( ) 1
2 sh

m

m m

E e
g E e e

E


  

  

 


 

  
    

, (8d) 

where  

  2 2

0 1 2 1 22 ch .E E E             

We shall mainly consider the local states in the forbidden zone because this case 

is the most physically interesting. Therefore, we have written down only Green 

functions for 1 2| | | |E     . 

 It is obvious that any real defect is connected with a simultaneous change 

of certain Coulomb and resonance integrals of the chain. However, wishing to 

obtain an analytical description of the local states we shall consider certain 

models, namely: change of one Coulomb integral (single substitution), 

simultaneous identical change of two Coulomb integrals (double substitution), 

and change of one resonance integral (perturbed bond). We may hope that a 

qualitative description of the real situation can be realized by the combination of 

the present results. 
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1.2.2 Single Substitution 

 Let the perturbation be described by the change   of the Coulomb 

integral of an atom n    

 ps pn snV     . 

Then Eq. (3) becomes   

 ( )n nn nU g E U  , 

the condition of solvability of which 

 1 ( ) 0nng E     (9) 

determines the energies of the local states. 

 We first consider the chain without bond alternation. Substituting the 

function 0 ( )nng E  from (5) into (9), one obtains   

 
21

1 [ ( ) ( )] 0
2 sh

ne
Q E Q E




 


     . (10) 

 Equation (10) can be solved analytically for two limiting cases: 1) when 

n  that is the substitution is made far away from the edge of the chain, and 

2) when 1n   (surface state). When n , neglecting in Eq. (10) the term ne   

and solving the corresponding equation, one obtains the known expression for 

the energy of the state localized in the middle of the chain [24]   

 2 2

0 sign( ) ( ) 4E E        .  (11) 

 Putting 1n   into (10) one also obtains the known expression for the energy 

of the surface state 

  2

0 sign( / )( / )E E           . (12) 

It is easy to show that the state with an energy given by (12) exists only when   

 | / | 1   , 

whereas in the case of the removal of the local level in the middle of the chain, 

as it follows from (11), the perturbation   might be infinitely small. 
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 For 1n   and n   Eq. (10) can be solved only numerically. Nevertheless, 

the asymptotic result can be found for the exact value of the minimum 

perturbation needed for removing the local state as a function of the value n. It 

follows from (5) that the minimal distance of the local level from the band edge 

corresponds to 0   (or 0| | | 2 |E E   ). Substituting 0   into (10) one 

concludes that perturbation of the n-th atom leads to the appearance of the local 

level only when 

  
1

| |
n






 . (13) 

 Now we shall consider the chain with alternating bonds. It follows from 

(8a) and (8d) that the results should be different for even and odd perturbed 

atoms. However, for n  these differences are exponentially small and 

equations of the type (9) should be the same for the states localized in the 

middle of the chain. Substituting n  into (8a) and (8d) and putting a 

corresponding expression into (9), one obtain an equation for the energy of the 

local states in the forbidden zone. An analogous equation could be obtained for 

the levels located above and below both allowed bands. We have not written 

down the Green functions which correspond to 1 2| | | |E    . A solution of these 

equations gives the energy of the local states E  for a single substitution in the 

middle of the chain, namely: 

  

1/2
2 4

2 2 2 2 2 2 2

1 2 1 2 1 2

( ) ( )
sign( ) ( )( ) 4

2 4
E

 
       

  
          

 
. (14) 

The positive sign here corresponds to the level located above or below both 

allowed bands, and the negative sign corresponds to the level in the forbidden 

zone. It follows from (14) that even an infinitely small perturbation of the distant 

atom leads to two local levels. One of them is located outside of the bands, and 

the other in the forbidden zone. When 0  , the level in the forbidden zone is 

filled, and the other is empty. When 0  , the substitution is reserved. If   is 
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small, the energy of both levels depends quadratically upon the perturbation. 

When 1| | | |    and 2| | | |   , the energy of the out-of-band level depends 

linearly on  ; whereas, the energy of the other level is approximately 

proportional to 1/  . The latter means that one must apply an infinitely large 

perturbation in order for the local level to reach the middle of the forbidden 

zone. Thus, the level removed from the edge of the valence band cannot be 

transferred to the district 0E   by any single substitution, and vice versa.  

 Now we shall consider the dependence of the minimal value of the 

perturbation needed for an appearance of the local level, on the number of the 

perturbed atom. Subsituting (8a) for the even atoms into (9), one obtains   

 
1 2

sh
1 0

sh

mE m e 


  


   , (15) 

where 2m l  is the number of the perturbed atom. Approaching 1 2| |E      

in Eq. (15), one concludes that the minimal perturbation by its absolute value 

needed for removing the level in the forbidden zone is    

 1 2
min

1 2

2 1
( ) sign( )in l E

l

 


 
  


, (16) 

and for the out-of-band levels 

            1 2
min

1 2

2 1
( ) sign( )out l E

l

 


 
 


. (17) 

Thus, if a perturbation is such that 1 2 1 2| | | 2 / ( ) | /l       , then this leads to an 

appearance of two local states. When 

  1 2 1 2

1 2 1 2

2 1 2 1
| |

l l

   


   
  

 
, 

only one out-of-band level appears. If 

  1 2

1 2

2 1
| |

l

 


 
 


, 

the local states do not appear at all.  
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 Following the same procedure for the case when the perturbation is 

localized on an odd atom with the number 2 1l m  , one obtains the following 

condition for removing the local level into the forbidden zone 

  

1

1 2 1 2
min

1 2 1 2

( ) sign( )
2 2

in l E l
   


   



 
    , (18) 

and for the out-of-band level 

  

1

1 2 1 2
min

1 2 1 2

( ) sign( )
2 2

out l E l
   


   



 
   . (19) 

 Comparing (18) and (19) with (16) and (17) one sees that for large values 

of l the criteria for the appearance of the local states on even and on odd atoms 

coincide. It is also seen from (18) and (19) that the appearance conditions for the 

surface level (l = 1) outside the bands and in the forbidden zone are the same, 

namely: 

  min min 2| (1) | | (1) | | |in out      , (20) 

that is the surface states always appear in pairs. 

 Let us now suppose that the polyene chain begins with the weak bond with 

1 2| | | |  . This may happen, e.g., if an unpaired electron is located at the edge of 

the chain [29]. We shall see how the results will change. In this case besides 

volume solutions ( 6 ) and (6) of an unperturbed problem (the number of 

solutions in the even chain is equal to 2N – 2) there are two more surface 

solutions localized at the edges of the chain. For a long chain when interaction 

of both surface states could be neglected, their energy is equal to zero, and the 

wave function of the state localized, say at the left edge of the chain, is   

 
2 2 1

(3) 2 1 1 2 2
3 3

( / ) / if 2 1,
( ) , ( )

0 if 2 ,

l

l

l

l m
l l

l m

    
   

   
  


   

and Eq. (9) leads to the following equation for the energy of the local states   
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2

21
32 2

10

2 | ( , ) |
| ( ) | 1

( )

E k l
dk l

E E k E


  




  
 

 , (21) 

where l is the number of the perturbed atom, and 1( , )k l  are the coefficients of 

AOs in ( 6 ). For even values of l: 3( ) 0l  . This means that the formulae (15) – 

(17) remain valid. For 2 1l m    the condition for removing the local level 

outside of the bands coincides with (19). However, for the existence of the level 

near the edge of the forbidden zone it is now necessary to have 

  

1

2 1 1 2

1 2 1 2

sign( )
2 2

E l
   


   



  
   

 
  (22) 

instead of (18). 

 Equation (22) gives an appearance condition of the local state only for    

 1 2

2 1

l
 

 





. 

In the opposite case it gives a disappearance condition of the local state 

genetically linked to the surface state of the unperturbed chain. To illustrate the 

situation let us consider an exact solution of (21) for l = 1 (perturbed surface 

level). The energy of the level in the forbidden zone 

  2 2

1 2 1 2sign( ) 2 chE          ,  (23 ) 

where   

 

2
2 2 2

2 2

2

1 1 2 1 1 2 2

1 ( ) 1 ( ) ( )
ln

2 4

    


      

 
      

        
     

.  (23 ) 

It is seen from (23) that when 0  , then  0E   (level in the center of the 

forbidden zone). With an increase of | |  the level is moving to the edge of one 

of the allowed bands, and if 2| | | |   , then 2 1| | | |E     which is in 

agreement with the criteria (22). Further  increase of 2| | | |   leads to the 

infusion of the local level into the allowed band. It follows from (19), the 

surface level appears with an energy 1 2| | | |E    , which means that it is located 
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above or below both allowed bands. In other words for any value of | |  in the 

chain with a broken edge-bond there may be one and only one surface state. As 

it is seen from (22), for   

 1 2

2 1

l
 

 





  

an increase of l requires an increase of | |  in order to move the level to the 

edges of the forbidden zone. It is obviously connected with the exponential 

decrease of the wave function of the surface state when the distance from the 

chain edge is increasing. In other words it is difficult to move the level by 

substitution at the point where the electron density is small. Comparatively 

larger values of | |  needed for an appearance of a new (besides the surface 

level) local level for the smallest l satisfied by the inequality 

  1 2

2 1

l
 

 





 

is in agreement with the known fact [25, 26] of the difficulty of producing two 

local states which are situated in the immediate neighborhood of one another. 

The extent of the chain region in which this effect can be observed is greater if 

the width of the forbidden zone is smaller.  

1.2.3 Double Substitution 

 As the simplest example of the mutual influence of two identical defects 

we shall consider the case where a perturbation consists of an identical change 

  of the Coulomb integrals of the chain atoms m and n. Then 

  ( )ps mp ms pn snV           

and (3) is reduced to   

 [ ( ) ( ) ] 0l lm m ln nU g E U g E U    . (24) 
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Substituting consequently l m  and l n  into (24), one obtains a system of two 

homogeneous linear equations, the solvability condition of which 

 2 2[1 ( )][1 ( )] ( ) ( ) 0mn nn mng E g E g E          (25) 

gives an equation for the determination of the local level energies.  

 Let us first consider the chain without bond alternation. Substituting the 

necessary Green function from (5) into (25), one obtains   

 
2

sh sh sh
1 1

sh sh sh

m n mm n n
e e e       

     

        
      

    
. (26) 

 When   | |n m    increases,   the   right-hand   side   of   (26)    decreases    

approximately as exp[ ( ) ]m n    . So for a large distance between defects it 

might be assumed equal to zero. Then Eq. (26) is transformed to Eq. (10) for the 

energy of the local state in the case of single substitution, and for , 1m n  there 

are two degenerate local states with an energy   

 2 2

0 sign( ) 4 ( )E E        . 

For , 1m n , but | | 1m n , then neglecting terms like exp( ), exp( )m n   , one 

obtains from (26)   

 
| |1

1
sh

m ne 

 

  
 . (27) 

The solution of (27) with the positive sign exists for any value of | / |   and 

0  , that is an appearance of the local level corresponds to | / | 0   . If one 

considers the negative sign in (27), then a solution does not always exist. An 

appearance of solution ( 0)   which corresponds to the second local level is 

possible only when | / | 1/ ( )m n    . Thus, if in the case of infinitely distant 

impurities located in the middle of a chain, there are always two (degenerate) 

local states, but when defects approaching one another, degeneracy is removed, 

and if the perturbation is not large enough, i.e.,   
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1

m n









, 

mutual repulsion of the two split levels leads to the situation where one of them 

flows back into the band. There are two local states only when  

  
1

m n









. (28) 

If condition (28) is fulfilled and the splitting of two local states is small, then Eq. 

(27) can be solved by the iteration method. For the zero approximation one can 

take the solution when | |m n  , namely:   

 

2

0ch 1
2






 
   

 
. 

The corresponding value of 0  is substituted into (27), then 1  is found, etc. 

After the first iteration the solution is as follows:   

 
22

2 2

0 2 2

1 ( )
4 ( ) 1 1 sign( )

2 4 ( ) 2 2

m n

E E
  

  
   



  
       

 

    
   
     

. (29) 

 To analyse the appearance conditions of the local states when both 

perturbed atoms are located not far from the chain edge, we should return to 

(26). Letting 0  , one obtains the following appearance conditions for one 

  
2( ) 4 ( )

2 ( )

m n m n n m n

n m n





    



 (30 ) 

and for two local levels 

  
2( ) 4 ( )

2 ( )

m n m n n m n

n m n





    



. (30) 

 It is easy to see that the right-hand side of (30 ) is smaller than 1/ m  but that 

of (30) is larger than 1/ n . Thus, the perturbation needed for an appearance of 

one local level in the case of two interacting impurities is smaller, but for the 

appearance of two levels is larger than the perturbation needed for an 

appearance of one local level on any of the two (n and m) single impurities. 
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 Considering the chain with bond alternation we restrict ourselves to the 

physically interesting case of local states in the forbidden zone. We shall 

consider separately the interaction of even perturbed atoms and the mutual 

interaction of even and odd perturbed atoms. The interaction of odd atoms is 

qualitatively the same as for even atoms and will not be considered here.  

 Let us first consider the interaction of two even atoms. Substituting (8a) 

into (25) one obtains an equation for the determination of local state energies, 

namely: 

  

2

1 2 1 2 1 2

sh sh sh
1 1

sh sh sh

m n mE m E n E n
e e e       

        

          
      

    
. (31) 

 Analysis of the appearance conditions having one or two solutions of (31) 

is analogous to the analysis of Eqs. (26) and (27). In fact, this analysis was based 

on the consideration of these equations in the limiting case where 0   which 

in the present case corresponds to an approach up to the edges of the allowed 

bands, that is 1 2| | | |E    . Comparing asymptotic expressions for (26) and 

(27) we see that they become the same if 1/   is changed to 1 2 1 2( ) / ( )    . 

Thus, by analogy with (28) – (30) we have the following conclusions. The value 

of the perturbation | |  needed for an appearance of one local state in the 

forbidden zone is   

 
2

1 2
1

1 2

( ) 4 ( )
| |

2 ( )

m n m n n m n

n m n

 


 

    
 

 
,  (32) 

and for a perturbation which leads to the two local states 

  
2

1 2
2

1 2

( ) 4 ( )
| |

2 ( )

m n m n n m n

n m n

 


 

    
 

 
. (33)   

In the case when , 1m n , but | | 1m n , Eqs (32) and (33) give 

  1| | 0,  1 2
2

1 2

1
| |

m n

 


 
 

 
. (34) 

In the latter case Eq. (31) is simplified to  
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  | |

1 2

(1 ) 1
2 sh

m nE
e 

  

 
    (35) 

and can be solved by the iteration method if the second term of the left-hand 

side of (35) is small enough. As a zero approximation, we may take the values 

of E  and 0  for infinitely distant impurities given by (14). The solution after the 

first iteration is    

 
2 4

2 2 2 2 2 2 2

1 2 1 2 1 2

( ) ( )
sign( ) ( )( ) 4

2 4
E

 
       

  
          , (36) 

where 

  0( )2 2( ) ( ) (1 2 )
m n

e
      . 

It should be noted that perturbed atoms in the formulae (31) – (36) have 

numbers 2m and 2n. 

 Finally considering the interaction of two even defects we note, as is seen 

from (31), that the local level cannot be shifted to the center of the forbidden 

zone ( 0)E   by any finite perturbation  .   

 Now we shall consider the behavior of the local states in the case of the 

interaction of even and odd defects. Substituting (8c) – (8d) into (25), one 

obtains the following equation for the energies of the local states:   

 

(2 1)
/2 /2 2

2 12

1 2 1 2

2
2

21 2

2

1 2

sh
1 1 1 ( )

sh 2

[ sh sh( 1) ]
.

sh

m
m

n

E m E e
e e e

E

m m
e


  



  
 

    

    

  

 
 



      
           

   
  
 

  (37) 

It is seen from (37) that unlike to the interaction of even impurities, an increase 

of | |  may shift the local level to the center of the forbidden zone and one may 

even pass through the whole forbidden zone from the bottom to the top. 

However, it may be shown that the perturbation needed for this increases 

exponentially with the increase of the distance between the impurities. 

Therefore, an analysis of (37) when 0   should be carried out with care for 
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here we meet cases of not only the appearance of the local states (removing from 

the bands) but also disappearance of the local states when for large | |  they 

are removed from one of the allowed bands, going through the whole of the 

forbidden zone, and flow into another band.  

 It is obvious for physical reasons (see also results for single substitution), 

that when approaching the lower edge of the upper band ( 1 2( )E     ) the 

perturbation 0   corresponds to an appearance of the local level and a 0   

to an infusion of the previously existing level into the band. The situation is 

reversed when approaching the upper edge of the lower band. Substituting 

0   and 1 2( )E     into (37), one obtains a quadratic equation with respect 

to  , namely: 

  
2

1 2 2 1 2 2 1 2 2

1 2 1 2

[ ( ) ][( )( ) ] [( )( ) ] 1 0m n m n m
 

        
   

 
          

 
 
 

.  (38) 

As it is seen from (38), for 2 1 2| | / ( )n m       both roots are positive. This 

means that for sufficiently large   two local levels may be removed from the 

lower band. The value of   needed for removing one or two levels should 

satisfy the inequalities 1    and 2   , where 1  and 2  are the larger and 

smaller roots of (38) in the absolute sense. 

 If 2 1 2| | / ( )m n      , then one solution of (38) is positive, and the other 

which is larger in the absolute sense is negative. The value 1    leads to an 

appearance of one local level, and any further increase in   cannot lead to 

removing the second level. The value 2 1       corresponds to the local 

level which is removed from the lower edge of the upper band when 1     

and shifted to the upper edge of the lower band when 2   . Thus, if the 

perturbed even and odd atoms are located sufficiently close  to  one  another  so  

that  their  numbers  2n   and 2 1m   satisfy the inequality   
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 2

1 2

| |n m


 
 


,  (39)   

then any identical perturbation of both atoms cannot lead to an appearance of 

more than one local level in the forbidden zone. In particular, as it follows from 

(39), two neighboring perturbed atoms (n = m) linked by a stronger bond for any 

values of 1  and 2  can give only one local level in the forbidden zone. It may 

also be shown that there is another situation for the levels located above and 

below the edges of both bands, namely: it is always possible to find such a value 

| |  that two levels will be removed. 

1.2.4 Perturbed bond 

 Let the perturbation be described by changing the resonance integral 

between the atoms n and n + 1 

  , 1 , 1( )ps pn s n p n snV         .   

Then Eq. (3) is transformed to   

 1 , 1[ ( ) ( ) ]l ln n l n nU g E U g E U     . (40) 

 Following the same procedure used for the derivation of Eq. (25), one 

obtains from (40) an equation determining the energy of the local states   

 2 2

, 1 , 1, 1[1 ( )] ( ) ( ) ( ) 0n n n n n ng E g E g E       . (41) 

It follows from (5) and (8a) – (8d) that Eq. (41) has the same pattern for both 

signs of the energy. It means that the present local states always appear in pairs 

and that their energies differ only in the sign. 

 We shall first consider the chain without bond alternation. Substituting the 

necessary Green functions from (5) into (41), one obtains   

 
2 2

( 1) (2 1)

2

sh sh sh( 1)
1 0

sh sh

n nn n n
e e     

   

         
    

   
. (42) 

 If the perturbation is localized in the middle of the chain, then neglecting 

terms like exp( )n  in (42) and solving the corresponding equation, one obtains   
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2

0 ,E E e


  


 
      

. (43) 

It follows from (43) that an appearance of a pair of local states is possible only 

when the bond is strengthened. 

 An analytical solution can also be found if the perturbed bond is located at 

the end of the chain. Substituting 1n   into (42) and solving the corresponding 

equation, one obtains 

  

2

2

0 2

1

, 2

2

E E e



  

  

 

 
 

       
   

 
 

. (44) 

It follows from (44) that the local states exist only when the end-bond is 

sufficiently strengthened, namely, when | / | 2   .   

 It should be noted that an analytical expression for the energy of the surface 

states can also be derived for a more general case when besides changing the 

resonance integral of the end-bond one also changes the Coulomb integral of the 

end-atom. In this case 

  1 2 1 2 2 1( )ps p s p s p sV            . (45) 

Substituting (45) into (3) and following the same standard procedure as before, 

one obtains   

 0 2 chE E     , (46) 

where    

 

2 2

2
2 2

e
   

   

      
       

   
. 

 It follows from (46) that an appearance of the local state with an energy E  

located above the valence band is possible when   

 

2

2
 

 

  
  

 
,  
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and for the level E  located below the same band 

  
2

2
 

 

  
  

 
. 

It means that there are two local levels if 

  
2

2
 

 

  
  

 
, 

and only one if 

  
2

2 2
  

  

  
    

 
. 

 The Eq. (42) permits the derivation of a relationship between the minimum 

perturbation needed for the appearance of paired local states and the number n  

of  the  perturbed  bond.  Letting 0   in (42) we see that the local states appear 

only if 

  
1

1
n






  . (47) 

 Now we shall turn to the local states in the forbidden zone of the 

alternating chain and shall consider two cases: perturbation of weaker and 

stronger bonds.  

 Substituting corresponding Green functions from (8a) – (8d) into (41), the 

following equation is obtained for the local levels appearing under the 

perturbation of the weaker bond   

 
2

2 2 ( 2 1)

/2 /2 2

2 1 2 12 2 2 2

1 2 1 2

sh ( ) sh
1 ( ) 1 ( )

sh 2 sh

n n

nn e E n e
e e e e

E

 

      
   

     

  

  
 

    


   
   

  
, (48) 

where 2n is the number of the perturbed bond. This equation can be solved 

exactly for the limiting case 1n . Letting n  in (48) and solving the 

corresponding equation, one obtain the energies of the two states localized far 

away from the chain edge   

 2 2

1 2 1 22 chE          , (49) 
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where   

 
2

2 2
11

2 2
e

  
 

  
      

 
,    

 2 2

1 2 2

2
1 ,

2

 
   

  

  
      

 
.  

An analysis of (49) shows that this solution exists only when 2 2| | | |   . This 

means that any small strengthening of the weaker bond in the middle of the 

chain always leads to the appearance of two local states in the forbidden zone.  

 Equation (48) also permits the derivation of the dependence of the 

perturbation needed for an appearance of paired local states on the number of 

the perturbed bond. Letting 0   in (48), the following condition for their 

appearance is obtained   

 2 1

2 1 2

2
1

( )l

 

  


 


, (50) 

where l is the number of the perturbed bond. 

 An analogous consideration can be carried out for the perturbation of the 

stronger bond. Using corresponding Green functions, one obtains the following 

equation for the energies of the local states 

 
2 2

2 2 2

1 2 2 1

1 2 1 2

1
1 [ sh sh( 1) ] sh [ ( ) ]

sh 2 sh

m

m me
m m e m E e e



   
      

     



   
     

   
   
   

, (51) 

which can be solved exactly in two limiting cases: when m (change of a 

bond in the middle of the chain) and when 1m   (surface level). In the first case 

setting m and solving the corresponding equation, one obtains 

  2 2

1 2 1 22 chE          , (52) 

where 

 
2

1 1
21

2 2
e

 


 
     

 
,    
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               1 1

1 2 1

2
1 ,

2

 
   

  

  
     

 
. 

 An analysis of (52) shows that any small weakening of the stronger bond 

located far away from the chain edge is sufficient for an appearance of the local 

levels. 

 Substituting 1m   into (51) one obtains for the surface state  

  2 2

1 2 1 22 chsurfE         , (53) 

where   

 
2

2 1 2

( )
2e

 

  

  
   

 
.  

It is easy to see that the solution of (53) as well as the surface state exists only 

when the first bond is sufficiently relaxed, namely, when 

  2

1 1

1
 

 


  .  

 From Eq. (51) the relationship of a perturbation needed for the appearance 

of the local states on the number m of the perturbed bond can be obtained. It 

follows from (51) that the local states appear only if 

  2

1 1 2 1 2

2
1

( )m

 

    


 

  
. (54) 

 The characteristic nontrivial property of polymers with conjugated bonds is 

the presence of paramagnetic centers. This was repeatedly proved 

experimentally by the  ESR  method  [30 – 32]. A satisfactory explanation of the 

general regularities of this phenomena is possible in terms of the local defect 

centers and the charge transfer between macromolecules [29, 33 – 37]. In 

particular it was suggested [29] that an experimentally observed ESR signal in 

long conjugated systems may be connected with an appearance of a pair of 

defects of the type 
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These defects have been interpreted [29] as radicals. The energy of the unpaired 

electrons localized on the defects situated at large distance from one another is 

equal to zero (Fig. 1). 

   

   

 Figure 1. Energy pattern of electrons when defects are infinitely distant 

from one another.  

 Pople and Walmsley [29] noted that when defects approach each other, due 

to vibrations of the nuclear core, the zero degenerate level is split and both 

electrons should drop to the lower level. The following valence scheme is 

obtained when the defects approach one another as closely as possible 

   

This state is not a triplet state. In fact this defect may originate simply by the 

weakening of one of the double bonds so that its resonance integral becomes 

equal to 2  instead of 1 . This could be obtained, e.g., by a distortion of the 

chain co-planarity. The energies of these local states thus obtained, are given by 

formulae (52) with 2   . The picture of the energy levels  is  given  in Fig. 2a. 
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Figure 2. Energy pattern of electrons when defects are close to each other:  

a) ground state, b) excited state. 

Transition to the lowest excited state (Fig. 2b) requires an energy E E  . If one 

assumes that spontaneous (thermal) appearance of such states is possible only 

for the scheme 2b, then it is obvious that within the framework of the method 

used here and by the authors of [29] the energies of the states pictured in Fig. 1 

and Fig. 2 are the same and are equal to the energy of the transition of one 

electron from the valence band to the conduction band. This simply means that a 

consideration of such defects without accounting for the deformation of the σ-

core [38, 39] and the electronic interaction would not be correct. All next 

paragraphs are devoted to different methods for accounting of interaction 

between electrons.  
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Chapter 2. The Generalized Hartree – Fock Method and Its Versions 

2.1 Introduction 

 Exact solution of the Schrodinger equation is known for only a few 

problems, mostly model ones. In practical molecular calculations different 

approximation methods are used. We shall review only those approximation 

approaches to solve molecular Schrodinger equations which permit obvious one-

particle interpretation of many-electron wave function and at the same time 

account for the most of the electronic interactions. These approaches are known 

as the self-consistent field (SCF) methods based on pioneering works of Hartree 

and Fock [40 – 42]. The SCF methods revised  below are mostly known as 

Generalized Hartree – Fock (GHF) approach with several different 

computational schemes having their own traditional names.        

 The wave function of the system of interacting electrons in general case 

must possess the following symmetry properties.  First of all, in order the theory 

to be in agreement with the experimental facts the wave function must be 

antisymmetric relative to interchange of any pair of electrons. When molecular 

Hamiltonian 

1 1 1

1 1ˆ ( )
2 | |

N N N

i i

i i i j i j

H V r
r r   

    


    

does not depend on spin variables the many-electron wave function must be an 

eigenfunction of 2Ŝ  and ˆ
zS operators. 

 One of the methods for constructing many-electron wave functions that 

possess the required symmetry conditions is based on mathematical apparatus of 

the symmetric group SN [43 – 45]. Irreducible representations of SN are classified 

by Young schemes and are numbered by symbol  1 2 3[ ] [ , , ,..., ]n      of 

corresponding Young schemes [43], where i  is the length of the i-th row of the 

Young scheme under condition that 1i i   . Dimensionality of irreducible 
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representation [ ]  is defined by a number of standard Young tables possible for 

a given Young scheme [ ]  and is equal to [43, 45]   

 [ ]

1 2 3

! ( )

! ! !... !

i j

i j

m

N h h

f
h h h h

 






, (55) 

where i ih m i   , and m  is the number of rows in the Young scheme [ ] . 

 Let us take a wave function of N electrons in the form    

 ˆ XG   ,  (56) 

where   is a function of the spatial coordinates of N electrons, X – function of 

the spin coordinates of electrons, and operator Ĝ  is chosen in a way that the 

function   obey the necessary symmetry properties. In particular, the operator  

Ĝ  can be chosen  as [46 – 52]   

 
ˆ

ˆ ˆ ˆ ˆ
rii ri r i

r

G G O  

   ,  (57)    

where  index    defines an irreducible representation of the group SN, index i   

corresponds  to  the i-th standard Young table for the Young scheme  , ˆri  is 

the parity of the permutation ˆ
ri ,  and the Young operators ˆ

riO  and ˆ
r i

  are 

given by [43 – 45]: 

  
ˆ

ˆ

ˆ ˆ ˆ( ) ,
!

ˆ ˆ ˆ( ) ,
!

r s r s

r s r s

f
O U

N

f
U

N


 




 



 

  









 (58)    

where ˆ( )r sU   are matrix elements of the matrix of the standard orthogonal 

Young – Yamanouchi  representation, and summation in (58) is taken over all 

N! permutations of the group SN, index   denotes an irreducible representation 

conjugative with  , operators ˆ
riO  are acting on the spatial coordinates of the 

electrons, and ˆ
ri

  – on the spin coordinates. Since the spin coordinates of the 

electrons take only two values, then the Young scheme   can contain not more 
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than two rows, and scheme   – not more than two columns: 

[2 ,1 ], [ , ]m n m n m    with ,n m n m N   . The dimensionality of this 

representation according to (55) is equal to: 

 [2 ,1 ] [ , ] !(2 1)

1 ! !
2 2

m n m n m N S
f f f

N N
S S

 
  

   
     

   

,  (59)      

where 2S n m  .  

 Fig. 3 shows two conjugate standard Young tables [2 ,1 ]m n m

fS


 и [ , ]

1

n mS .  

   

  Fig. 3. Standard Young tables [2 ,1 ]m n m

fS


 (left)  and [ , ]

1

n mS  (right). 

Standard tables are numbered in order of deviation of the sequences of numbers 

in the cells of the Young schemes relative to the natural numbers sequence, if 

you read row by row from the top to the bottom. 

 Consider  the  structure  of  the  operators [2 ,1 ]ˆ m n m

ffO


  and [ , ]

11
ˆ n m , which  will be  

needed later. Let ˆ
a  be a certain permutation of the first n symbols (a subset a), 

ˆ
b  be a certain permutation of the last m symbols (a subset b). Next, let ˆ

r  be the 

product of r different transpositions, each of which transposes one symbol from 

the a subset with a single symbol from the b subset. Any permutation in the 

group SN for any ˆ ˆ ˆ, ,a b r    can be written as   

 ˆ ˆ ˆ ˆ
a b r    . (60)      

The corresponding matrix elements are given by [46]   
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1

[2 ,1 ]

ˆ ˆ
ˆ ˆ ˆ( )

m n m

a bff a b r

n
U

r
     





 
  

 
, (61) 

             

1

[ , ]

11
ˆ ˆ ˆ( ) ( 1)n m r

a b r

n
U

r
  



 
   

 
, (62) 

where 
!

( )! !

n n

r n r r

 
 

 
  – binomial coefficients. 

 As shown by Goddard [46], the function  ˆ XiG  satisfies the Pauli principle 

  ˆ
ˆ ˆˆ X= Xi iG G 

    

and is an eigenfunction of 2Ŝ , namely: 

   2ˆ ˆ ˆX= ( 1) Xi iS G S S G    . 

Thus it follows that the choice of the  Young's scheme is determined by  the 

value of the total spin S.  The choice among 1,2,3,...,i f  to construct the 

function 

  ( ) ˆ XGI

iG     (63) 

is arbitrary to a certain extent; later we shall examine the effect of this choice on 

the results of calculations. 

 Note also that the operators ˆ
iG  satisfy [46] the following relation 

  [1 ]

ˆ11

ˆ

1 1 ˆˆ ˆ ˆ
!

N

i

i

G
f N




 

      , (64)   

where   antisimmetrizator [1 ]

11
ˆ N

  is the Young operator  corresponding to Young 

scheme of a single column. 

 Molecular Hamiltonian Ĥ  does not depends on the spins and commutes 

with all permutations of the electron coordinates. Then, the energy value [47]   

 ( ) ( )ˆ ˆ ˆ ˆˆ ˆX X | |/ /GI GI

i i ii iiE G H G H O O             . (65) 

 We will be further interested in such an approximation of the functions (9) 

that functions  Ф and X can be written as: 
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  1 1 2 2

1 1 2 2

( ) ( ) ( ),

X ( ) ( ) ( ),

N N

N N

r r r

s s s

  

  

  

  
 (66)     

where  

  
( ),

( )
( ).

i

i i

i

s
s

s







 


 

 Substituting (66) into (65) and varying the functional   

 |j j j

j

I E       

by j , one obtains an equation for the normalized orbitals minimizing (65), 

namely:  

 ˆ ( ) ( ) ( ), ( 1,2,..., )k k k kH r r r k N     (67) 

where ˆ ( )kH r  is rather complicated effective Hamiltonian, which depends on the 

functions k .  Equations (67) is a set of nonlinear integro-differential SCF 

equations for variation function (56). In other words, the orbitals ( )k r  can be 

considered as eigenfunctions, which describe the state of an electron in the field 

of the nuclei and a certain averaged field of the remaining N – 1  electrons. 

 It is easy to establish connection between the function (63) and variational 

Fock function [42] in the form of Slater determinant [53, 54]. Let us  select Ф 

and X in the form 

  
0 1 1 1 1 2 2 1 2 1 2 1

0

ˆ ( ) ( ) ( ) ( ) ( ) ( ),

ˆX (1) (2) (2 1) (2 ) (2 1) ( ),

i m m m m m m n N

fi

r r r r r r

m m m n m

      

      

       

       
 (68)    

where ˆ
ji  is a permutation by which one obtains table j from table i. The  

function 
0 0

ˆ XiG  coincides up to a phase factor with the Slater determinant. 

Thus, equations (67) are a generalization of the Hartree – Fock approximation, 

since during transition from (66) to (68) we superimpose additional constraints 

on the form of the variation function. This implies that   

 
( ) ( )

( )

( ) ( )

ˆ ˆˆ ˆX X

ˆ ˆ |X | X

HF HF
i iGI

HF HF

i i

G H G H
E

G G

 

 

   
 

  
. (69) 
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 When solving equations (67) it is convenient to use the Roothaan's  method 

[56]. Let us expand the orbitals k  over a certain basis functions  : 

  
1

( )
M

k kC M N 



 


  . (70) 

 Then from (67) one obtains the equations for the expansion coefficients kC  

of the form   

 ( )

1 1

M M
k

k k kH C S C   

 


 

  , (71) 

where S  are overlap integrals of the basis functions. Equation (71) is solved by 

the method of successive approximations [55].  It should be noted that in the 

general case (for any i in the formula (63)) the matrices ( )kH  depend on k [47], 

which considerably  complicates the solution of the equations (71) in 

comparison with the analogous equations for the Fock variational function. 

However, if i = f, thus a variation function ˆ XfG is used, equations (71) take the 

form [48] 

  ( ) ( ) ( ) ( )

1 1

M M
a a a a

k k kH C S C   

 


 

  , (72) 

  ( ) ( ) ( ) ( )

1 1

M M
b b b b

k k kH C S C   

 


 

  . (73) 

 Thus, if one uses the operator ˆ
fG  for the construction of the wave function 

(9), then one obtains only two sets of equations for the expansion coefficients 

kC . Solving the system of equations (72) – (73), we obtain two sets of 

orthonormal vectors  { ( )a

kC } and { ( )b

kC }. If  i f , in the general case, these 

vectors  are not orthogonal. Thus the wave function of the GF method is 

represented in the form    

  ( )

1 1
ˆ XGF

fG   , (74) 

where 



38 
 

  1 1 1(1) ( ) ( 1) ( )a na b mbn n N           , (75) 

  1X (1) ( ) ( 1) ( )n n n m           , (76) 

  ( ) ( ),a b

ia i ib iC C   

 

      . (77)  

 Expansion vectors of different subsets, in general, are  not orthogonal:    

 | 0 ( , 1,2,..., )ia jb i j M    . (78) 

 Amos and Hall have shown [56] that it is always possible to make such a 

unitary transformation of the functions in (75): 

  
1

ˆ ˆ ˆ( ),
n

ia la li

l

V VV I  



    (79) 

  
1

ˆ ˆ ˆ( ),
m

jb lb lj

l

U UU I  



    (80) 

that 

  
1,2,...,

| , 1
1,2,...,

ia jb i ij i

i n

j m
   

 
     

 
. (81) 

 A method to obtain matrices V̂  and Û  is explicitly described in [56, 57]. 

Functions that satisfy equations (81), are usually referred to as the 

corresponding orbitals [58]. 

 Goddard [48] has shown that the function (74) and the matrices of the 

operators ( )ˆ aH  and ( )ˆ bH  appearing in the equations (72) and (73) are invariant 

under the transformation (79) – (80). However, if you require that the self-

consistent solutions of the equations (72) and (73) satisfy (81), you'll lose the 

one-particle interpretation of the solutions. In other words, the orbitals ia  and 

ib  can not be interpreted as a state of an electron in the field of the nuclei and 

the average field of the other electrons. Moreover, matrices of operators ( )ˆ aH  

and ( )ˆ bH , will depend on k. On the other hand, it is much easier  to calculate the 
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matrices of operators ( )ˆ aH , ( )ˆ bH  and corresponding energies over orbitals ia  and 

ib , rather than over orbitals ia  and ib . 

 Matrix  elements of operator ( )ˆ aH  are the following [48]: 

  

( ) , ,

, ,

,

, , , ,

, , , ,

, , ,

, , , ,

, , , ,

ˆ ˆ ˆ| | | | | | | |

ˆ ˆ ˆ| | | | , | | , , | | ,

ˆ ˆ, | | , | | , | | ,

a a a vb a i

a i a vb a

i v

a vb i a i a i

ub a j a j j a

u v i j i j

a vb i a j t

j a t vb a i

H h h i vb b i h

ub vb i h j i g j i g j

i g j t vb b j t g i

       

     

    

      
 

       

    
 



  

, , ;

, , , ,

, , , ,

, ; , ,

ˆ| | , | | , | |

i j t v

a vb i j a vb

ub a s t ub a

u v i j s t u v
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 (82) 

and similarly for ( )ˆ bH , where   

 *ˆ ˆ| | ( ) ( ) ( )vbA vb dr r A r r    ,  

 
1ˆ ˆ( ) ( )
2

h r V r    ,  

 * *

1 2 1 1 2 2

1 2

1
ˆ, | | , ( ) ( ) ( ) ( )

| |
i t j si j g t s dr dr r r r r

r r
   

 .  

The quantities   are quite complicated functions of overlap integrals i  defined 

by (81), for example: 

  

1
1

0

00
m

a

a p

p

n
A T

p






 
   

 
 ,   

 
1 2

1 2

2

{ , ,..., }

( )

,
p

p

i j

p k k k k k

k k k

k k

A x x x x 



   .  

It follows from (82) that there are all together 78 matrices of the operators ̂ . 

Expressions for all matrices given in  [48]  for  Hamiltonians ( )ˆ aH  and ( )ˆ bH  are   

based   on   orbitals   satisfying   (81).  

 Normalization integral for the function (74)   

 ( ) ( )| 00GF GF T   .  (83) 
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 With the assumption that the unitary transformations (79) and (80) were 

performed and *

i i   the average energy value over the function ( )GF  is the 

following [5]: 

  

( ) ( ) ( )

1

ˆ| | / 00

ˆ ˆ ˆ{{ [( | | | | ) 01( ) 2 | | 11( )]
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T i j ia ib ja ja jb jb ja ia ib ja ia jb j
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  (84) 

where 

  ˆ( , | , ) , | | ,i j s t i s g j t ,    
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  (85)   

 

1 0

1 0

0 0 0

( ) ( ) | ,

( , ) ( ) ( , ) | ,

( ) ( , ) 1.

i

i j

p p i p p x

p p j p p x x

A i A x A i A

A i j A i x A i j A

A A i A i j

 

  

   


   


   

 (86) 

 Iterative procedure for solving equations (72) and (73) is as following. 

Compute the eigenvectors ( )C ( )a

k i  and ( )C ( )b

k i  of the equations (72) and (73) on 
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the  i-th iteration. Then, being performed the transformations (79) and (80) and 

defined the corresponding vectors ( )C ( )a

k i  and ( )C ( )b

k i , we build new matrices 

( ) ( 1)aH i   and ( ) ( 1)bH i  . Compute the eigenvectors on the  ( 1i  )-th iteration and 

so on unless the self-consistent vectors ( )C a

k  и ( )C b

k  are obtained. Thus, the 

procedure for solving the equations (72) and (73) is just similar to the solution of 

the Hartree – Fock  single-determinant wave function in the algebraic approach 

[55].  The only difference lies in the fact that it is necessary to solve two coupled 

equations (72) and (73) and to perform the transformations (79) and (80) at each 

iteration.  Nevertheless note that the matrices of  operators ( )ˆ aH  and ( )ˆ bH  are 

much more complicated than the corresponding matrix in the Hartree – Fock – 

Roothaan method [55]. Thus, if the latter contains only three types of the matrix 

elements: one-electron, Coulomb and exchange ones, the matrices of the 

operators ( )ˆ aH  and ( )ˆ bH  in general case  contain  2 78   types of matrix elements. 

 As a final result of the self-consistent procedure described above one 

obtains the orbitals ia  and ib  minimizing the energy expression (84).  

According to (69) a value of the total energy of the system obtained in this way 

is always not higher than the energy in the Hartree – Fock – Roothaan approach. 

Note also that the average values of the electron and spin densities can also be 

calculated with the function (74) built on corresponding orbitals since the 

function (74) is invariant under transformations (79) and (80) [56]. 

 The Goddard’ GF-functions method relates to other similar methods 

proposed earlier. Pople and Nesbet [59] proposed to vary the energy over a 

function of the form   
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11 1 1
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ˆ 1 1 1 1

1

[1 ]
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n m
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i a na n b n mb N
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i n n n m

n n N
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N

s s s s

   



   

     

    





 

       

      

          

 , (87) 
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where 

  
( ) ( ) ( ),

( ) ( ) ( ), ( ),

i ia k k

i ib k k ia ib

k r s

k r s





  

    



 
   

î – permutation operator of electron spatial coordinates, ˆ
i – permutation 

operator of spin coordinates of the electrons, and the summation is taken over all  

N! permutations of the group SN, 
î

  – parity of the permutation î . 

 Optimizing orbitals ia  and ib , appearing in  (87), one can obtain the 

energy lower than the Hartree – Fock energy value.  This method was named as 

unrestricted Hartree – Fock method  (UHF). However, as it follows from (64), 

the wave function (87) is a mixture of various multiplets, as a consequence it is 

not an eigenfunction of the operator 2Ŝ . Therefore, the application of the 

variational function (87) to calculate the electronic structure of molecules in a 

rigorous approach is not justified. 

 To eliminate this shortcoming Lowdin [60 – 62] proposed to pick out the 

required spin component from the function (87) by projection operators ˆ
l :   

 ( )ˆ UHF

l l  , (88) 

where  

  
2ˆ ( 1)ˆ

( 1) ( 1)
l

k l

S k k

l l k k

 
 

  
 . (89) 

 It is also possible to vary the orbitals ia  and ib  entering the function l  

by minimization  the expression 

 ( ) ˆ| | |/EHF

l l l lE H     . (90) 

This approach was named as extended Hartree – Fock method (EHF).  

 The wave function (88) can be represented [62] as  

 ( ) [1 ] [1 ] ( )

11 1 1 11 1 1

0

ˆ ˆ ˆ ( , )
N N

m
EHF p

l l p S

p

C l M 


         , (91) 
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where ( ) / 2SM n m   is the projection of the total spin of the electrons on a 

choosen direction, 

    ( )

1 1
ˆ

p

p

p



   , (92) 

with ˆ
p  being the operator interchanging р indices of the subset a with р indices 

of the subset b, i.e. ˆ
p  is similar to ˆ

p  in (60). The explicit form of the 

coefficients ( , )p SC l M  for different cases was obtained by Lowdin [62], Sasaki 

and Ohno [63], and Smith [64]. The most general expression of these 

coefficients is [63]: 

2( )!( )! ( 1) [( )!]
( , ) (2 1)

( )! ! ( )!( )!(2 1)!

t

S S S
p S

tS S

m S M p S M S M t
C S M S

S M t S M t p m t S

      
 

     
 . 

 There is hold more simple expression for the case SS M [63]: 

  

1

2 1
( , ) ( ) ( 1)

1

p

p S S p

nS
C M M C S

pn



 
    

  
. (93) 

 Calculation of average values of operators over wave functions of the form 

(88) is quite complicated even when the operators are not spin dependent. This 

is due to the fact that the summation  over  the  spin  variables  in  expressions  

such  as  (90)  is  a  rather  cumbersome  task. 

Nevertheless, there were obtained a number of general expressions for the EHF 

method –  expressions for the electron and the spin density matrices as well as 

for energy [60, 61, 65 – 67]. 

 As shown by Goddard [47], the wave function (91) for the case SS M   can 

be represented as  

  ( ) [1 ] [1 ] [ , ] [2 ,1 ] ( )

11 1 1 11 1 11 1 1 1

1 1ˆ ˆ ˆ ˆˆ
N N m n mEHF n m GF

S fG
f f




               . (94) 

This is easily seen by comparing the expressions (58) and (62) for the operators 

ˆ
ri

  and matrix elements [ , ]

11

n mU  with the expression (93) for the coefficients ( )pC S  

in (91). Thus, the EHF wave function is equivalent to the Goddard GF wave 
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function if SS M . However, taken into account  the expression (65), we note 

that the calculation of the average values of the spin-independent operators 

much simpler to perform by Goddard's method due to summation over the spin 

variables in (65) is taken out of the brackets and canceled.  Furthermore, the 

using of the theory of the permutation group in general facilitates the reduction 

of the equations for the optimum orbitals ia  and ib , entering in ( )EHF , to the 

eigenvalue equation of the form (72) – (73) [48]. 

 In connection with the difficulties described above in calculating the 

optimum EHF orbitals for specific calculations of π-electronic molecular 

structures the  simplified EHF version named as the alternant molecular orbitals 

(AMO) method has been used much wider.  This method was proposed by 

Lowdin [60, 68 – 70]. The method consists in the following. Suppose that the 

orthonormal set of orbitals { }ka  that are solutions of the Hartree – Fock – 

Roothaan equation or even in the worst case of the Huckel equation [71, 72, 28] 

is known.  Suppose further that the ground state of a molecular system is 

described in this approximation by single determinant wave function which 

contains m doubly filled orbitals 1 2 3, , ,..., ma a a a  and n m  singly occupied orbitals 

1,...,m na a . Under these assumptions, the wave function of the AMO method is 

constructed as following.  Each of the doubly occupied orbitals (1 )ka k m   

according to a certain rule is matched with one of the vacant orbitals ( )
k

a k m  

and thus two orthonormal AMO sets are constructed:   

 

cos sin , ( 1,2,3,..., )

cos sin , ( 1,2,3,..., )

. ( 1,..., )

ka k k k k

kb k k k k

ka k

a a k m

a a k m

a k m n

  

  



   


   
   

  (95) 

 Substituting 1  in (91) as 

  1 1 1(1) ( ) ( 1) ( )a na b mbn n N           , 
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one obtains the wave function ( )AMO  of the multi-parameter AMO method. 

Since orbitals (95) satisfy (81) due to orthogonality of orbitals ka , the average  

energy value 

  ( ) ( ) ( ) ( ) ( )ˆ| | |/AMO AMO AMO AMO AMOE H       (96) 

will be determined by the expression (84). Varying ( )AMOE  over k , one obtains 

optimal AMO of the form (95).  If the above procedure is performed with all k  

being the same ( k  ), the corresponding method is called a single-parameter 

AMO method. 

 Let us consider certain features of the AMO method applied to alternant 

systems. Molecular systems are called alternant ones if their atoms can be split 

into two subsets such as the nearest neighbors of an atom of one subset are being 

only atoms of the other subset [73].  In  the  case  of  π-electron system of the 

alternant hydrocarbons to obtain AMO (41) complementary orbitals ka  and 
k

a  

are pairing in the following way [74]:  

  
* **

* **

,

,

k k k

k kk

a C C

a C C

   

 

   

 

 

 

 

 

 

 
 (97)   

where 
*

 means that the summation is taken over the atoms of a one subset, 

and 
**

 – over the atoms of another subset.  A detailed description of the АМО 

method and its applications is given in [67]. 

 It is easy to establish a connection between EHF and AMO methods [56, 

68]. If the energy (96) is minimized not only over k , but also over the orbitals 

ka , one obtains the wave function and energy of the EHF nethod. In fact, the 

orbitals ka  and kb  in (37) can always be transformed in a way as to hold the 

relation (81). Orbitals that satisfying (81) can be represented in a form of (95) 

[56] if   
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k ka kb k

ka kb kk

k ka

a k m

a k m

a k m n
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





   


    
   

  (98) 

where 

  cos2k ka kb k     . (99) 

 Minimization of the expression (96) represents a problem to find an 

extremum over for many nonlinear parameters. This is as already mentioned 

above the main shortage of the computational AMO scheme compared to the 

method proposed by Goddard. 

 Thus establishing the connection between different approaches of the SCF 

theory on variational function with "different orbitals for different 

spins/DODS», namely, between AMO,  EHF, and GF methods, we proceed 

further to discuss the properties of the corresponding solutions, as well as some 

applications of these methods. 

 

2.2 Properties of solutions of the generalized Hartree – Fock equations  

and their applications 

  

 We first consider the properties of the EHF self-consistent solutions and 

focus mostly on the single-particle interpretation of the EHF wave function (74). 

Equations (67) or (72) – (73) for orbitals ka  and kb  can be transformed [50] to   

 
( )

( )

ˆ ˆ( ) ,

ˆ ˆ( ) ,

GF a

ka ka k ka

GF b

kb kb k kb

h V

h V

  

  

 

 
 (100) 

where ĥ  – operator of the kinetic energy and potential energy of an electron in 

the field of the nuclei, ˆGFV  – effective potential operator of the remaining N – 1 

electrons. It follows from (100)  that the functions ka   and kb  can be 
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interpreted as the state of an electron in the field of the nuclei and the average 

field of the other electrons. In this sense there is a complete analogy with the 

Hartree – Fock approximation.  This important result means the following. 

Rather than to operate with the Ψ-function of N electrons in the abstract 3N-

dimensional space, we can consider certain  single-electron function in a real 

three-dimensional space. In general case, this is not eligible even if one 

decomposes many-electron wave function into the one-electron functions. One 

must have equations of the form (100) in order their solutions obey a single-

particle interpretation. Considering molecules or solids, we are talking, for 

example, about an electron of the oxygen atom, inner and valence electrons, 

conductivity electron, localized electron, π- and σ-electrons, d-electron etc. 

There is always tacitly assumed that there do exist equations of the form (100), 

since it is impossible to distinguish between the electrons themselves and 

therefore can not be said that a certain electron is in a particular state that can 

appear in the expansion of the exact many-electron Ψ-function.  Equations (100) 

as well as the HF equations do not assume the actual assignment of electrons to 

particular states.  These equations are obtained by approximating the exact wave 

function (74) with  further variation of its orbitals in a way as to minimize the 

energy. Analyzing the corresponding  equations, we note that each orbital is an 

eigenfunction of a certain operator mapping with the Hamiltonian of an electron 

moving in the field of the nuclei and the average field of the other N – 1  

electrons. Naturally, all these arguments, no matter how convincing they are, do 

not strictly prove that the solutions of the SCF equations are directly related to 

the physical quantities and, therefore, make sense of themselves. However, it is 

clear that these solutions have a number of convenient and useful properties. 

 Goddard has shown [50] that the energy (84) of N-electron system can be 

represented as a sum of two terms:   

 ( ) ( ) ( 1) , /GF k

k k k kE E N E N e e D     , (101) 
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where the term ( 1)E N   does not depend on the state of the N-th electron. This 

expression is valid for all orbitals kb , i.e. orbital energies ( )b

k  have a meaning of 

ionization potentials predicted by  EHF.  This statement is known as Koopmans’ 

theorem [75]. In all fairness, we note that Koopmans’ theorem  is just 

approximate: ionization potentials predicted close to the experimental values if 

an  error in the description of N – 1 electrons is compensated by a change of 

correlation energy passing from N – 1 to N electrons. It is also obvious that the 

Koopmans’ theorem is asymptotically exact.  

 If one uses the Roothaan method [55], than each of the equations (72) and 

(73) will have M N  solutions ka  and kb , respectively. The question arises as 

which of these solutions should be used to construct the EHF Ψ-function. It is 

shown in [50] that there should be selected n orbitals   ka  and  m orbitals kb  

with minimal Lagrange multiplier ( )a

k and ( )b

k , i.e. procedure for orbital 

selection is the same as in the Hartree – Fock – Roothaan method. Exceptions to 

this rule may be accounted in a case of multiple degeneration of k [50], for 

example, when treating the heavy atoms.  

 If one of the orbitals in the EHF wave function (74), for example ( )ka k n   

or  ( )kb k m   is replaced by one of the vacant orbitals ( )k a k n 
   or ( )k b k m 

   

respectively, we obtain some kind of the excited configuration  ( )( , )EHF k k , 

where k  – the number of the orbital replaced, and k – the number of replacing 

orbital.  Goddard has shown [50] that   

 ( ) ( )ˆ( , ) | | 0EHF EHFk k H   . (102) 

 Thus, the Brillouin theorem [76 – 79] is hold in the frame of the EHF 

approach, which is simply equivalent to the variational principle. Note also that 

in the general case 

  ( ) ( )( , ) | 0EHF EHFk k   . (103) 
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 The spatial symmetry of the one-electron orbitals within EHF approach 

was discussed by Goddard [50] and Popov [80] for the singlet state. It was 

shown that the requirement of non-degeneracy of the ground state wave function 

( )EHF  imposes the limitations of one of two possible types on the symmetry 

properties of the orbitals. The first possibility corresponds to the case when  

orbitals of each of the sets { }ka  and { }kb  should be the basis functions of the 

irreducible representations of the symmetry group G. In this case partitioning of 

sets into irreducible subsets may not be equivalent.  Eigenvalues ( )a

k and  ( )b

k  in  

(72) and (73) may also be different. 

 The second possibility is feasible for symmetry groups having at least one 

subgroup g of index 2. In this case orbitals of each sets must be the basis 

functions of the irreducible representations of the subgroup g, and partitioning of 

sets into irreducible subsets should be equivalent. Eigenvalues ( )a

k  and ( )b

k  in 

(72) and (73) have to be equal, while the corresponding eigenfunctions ka  and 

kb  may be different. Thus, the restrictions imposed on orbitals in EHF approach 

by symmetry are less severe than similar restrictions in the Hartree – Fock 

approximation. This conclusion is valid for all GI-methods ( )I F [47]. 

 To illustrate the methods considered above and the pecularities of their 

solutions let us  consider some typical examples. Different orbitals for different 

spins ia  and ib  have been proposed for the first time by Hylleraas [81] and 

Eckart [82] for He atom. In this case, the coordinative part of the function (56) 

for the singlet ground state   

 1 2 1 2 1 2

1
( , ) [ ( ) ( ) ( ) ( )]

2
a b b ar r r r r r      , 

with a b   corresponds to the traditional method of Hartree – Fock 

approximation. In the frame of the EHF method with this function it is 

accounted 93% of the radial correlation energy [83, 84]. Within the UHF 

method with functions   in exponential form 
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  ( ) exp( ), ( ) exp( )a i i b i ir r r r        

80% of the correlation energy is accounted for, and exponents are 2.183   and 

1.189  . Calculations in this approximation for the isoelectronic series H
–
, He  

and  Li
+
 are made in [85, 86], and for large values of the nuclear charge Z up to 

Z = 10 are published in [87]. It was found that orbital splitting is decreased with 

increasing of Z. The exponents   and   should not be interpreted as the 

effective charges.  In particular, the assumption that an «effective charge of the 

outer electron"   will be striving for  Z – 1 with increasing Z [85], was not 

confirmed [87]. 

 Consider the calculation of the H2 molecule in the framework of GF 

approach and compare results with similar calculations by the Hartree – Fock – 

Roothaan method [47]. Function (63) of the ground state of the hydrogen 

molecule is ( 1)m n     

 ( 1) [2]

1
ˆ (1) (2) (1) (2)G

a bG      . (104) 

 In this case, the GF and G1 methods are equivalent, since there is only one 

standard Young's table. Molecular orbitals were expanded over the basis 

consisted of the Slater atomic orbitals (AO) 1s, 2s, and 2pσ of each of the 

hydrogen atoms. Table 1 shows the expansion coefficients of the self-consistent 

orbitals a  and b  appearing in the expression (104) for the equilibrium 

internuclear distance R = 1.4 and R = 6 a.u.  The letters A and B denote 

different hydrogen atoms. The second column shows the optimal values of the 

Slater function exponents.  

 As seen from Table. 1, the density 2| |a  as well as 2| |b  has different values 

at different protons even at the equilibrium internuclear distance. When 

separating nuclei apart molecular orbital a  is urging towards the atomic orbital 

1s localized on one of the protons, and orbital b  –  towards an atomic orbital 

1s, localized on the other proton.  As noted above, such a behavior of self-
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consistent EHF/GF molecular orbitals is possible due to the fact that the spatial 

symmetry (in this case the symmetry of the Н2 molecule) does not impose the 

requirements   

 2 2| ( ) | | ( ) |i A i Br R r R      

on the EHF orbital. Therefore, the contribution of ionic configurations into the 

Н2 ground state wave function tends to zero as the nuclei are moving apart. In 

the Hartree – Fock approach the Н2 ground state wave function has the form 

  
2( ) [1 ]

11 1 1
ˆ (1) (2) (1) (2)HF G      ,   

and due to the symmetry of the Н2 molecule 

  2 2

1 1| ( ) | | ( ) |A Br R r R    .  

                                                            Table 1 

  EHF orbitals for the hydrogen molecule  

AO Exponents φa φb 

 R = 1.4 a.u. 

А1s 1.3129 0.775023 0.121577 

А2s 1.1566 0.111130 0.042025 

A2pσ 1.9549 0.003120 0.037667 

B1s 1.3129 0.121577 0.775023 

B2s 1.1566 0.042025 0.111130 

B2pσ 1.9549 0.037667 0.003120 

 R = 6.0 a.u. 

А1s 1.0045 0.993720 0.002525 

А2s    0.850 0.007571 0.002730 

A2pσ    0.820 0.001209 –0.000870    

B1s 1.0045 0.002525 0.993720 

B2s    0.850 0.002730 0.007571 

B2pσ    0.820 –0.000870 0.001209 
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 Table 2 shows the energy of Н2 for different internuclear distances obtained 

by the Hartree – Fock method and the GF approach. Slater atomic basis for both 

calculations are shown in Table. 1.  

                                                                               Table 2 

The energy of the hydrogen molecule 

for different internuclear distances, a.u. 

R Method 

HF GF Exact 

1.4    –1.133449 [88] –1.151526    –1.174475 [89] 

6.0    –0.82199 [88] –1.000552  

∞    –0.7154 [61] –1.000000    –1.000000 

  

 As follows from Table 2, the GF method in contrast to the Hartree – Fock 

approximation shows the correct asymptotic behavior of the Н2 energy with 

moving  nuclei apart. We shall see below that this result remains valid for 2N  . 

It gives  us a possibility to use the GF method to calculate the interaction of 

atoms and molecules, and this is one of the advantages of EHF approach. 

 Consider spin density calculations at the nucleus of a lithium atom [47]:   

 
1

ˆ( ) ( ) ( ) |/
N

z z i

i

R s i r R S 


      ,  (105)     

where  ˆ ( )zs i  –  spin  projection  operator  of  the  i-th  electron,  ( )r  –  three-

dimensional  Dirac δ-function, S – total spin   ( 0S  ),the nucleus coordinate 

0R  . 

  Table 3 shows the values of 4 (0)z   and energy of the ground state 2S  of 

the lithium atom calculated by different methods.  

 The table shows that in contrast to the Hartree – Fock approach EHF and 

UHF methods give good results for the (0)z  value. If you select a doublet 



53 
 

component from the UHF function (87),  then after variation of orbitals (UHF 

with projection), the result obtained for (0)z  is being much worse than in the 

traditional UHF method.  

                                                                        

                                                                                            Table 3  

  Energy and spin density at the nucleus of a lithium atom  

Method 4 (0)z   Abs. error, 

% 

Energy,  

a.u. 

HF 2.094 28 –7.432725 

UHF 2.825     2.8 –7.432751 

UHF 

with projection 

2.345   19.3 –7.432768 

GF/EHF 3.020     3.9 –7.432813 

Experiment 2.906 – –7.4780 

 

 Among the various applications of the AMO method to alternant 

hydrocarbons (AH), we note the paper of Swalen and de Heer [90]. It compares 

the results obtained by a single-parameter and multi-parameter AMO method to 

conjugate AH with different numbers of π-electrons. We introduce the notation   

 
( ) ( )

0
HF AMOE E

N



   .  

 It is shown in [90] that in the case of single-parameter AMO method   

value decreases with increasing N, while in the case of multi-parameter AMO 

approach   value increases with increasing N for the same set of molecules. It 

can be concluded that the single-parameter AMO method should only be used 

when calculating small molecules and its application to large electronic systems 

is not efficient. 
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 We turn now to a possibility of further generalizations of the EHF 

approach. As already noted, when using the expression (63) for constructing the 

function Ψ of N electrons one can choose f different operators ˆ ( 1,2,3,..., )iG i f  .  

The choice of the i value can be arbitrary from the physical point of view. This 

is related to the existence of the so-called spin degeneracy due to the fact that for 

a given value of the total spin S of the N electron system and its projection Sz 

one can construct f  correct spin functions, where f is defined by (59). Selecting i 

value one just defines the type of spin-functions [51]. Ladner and Goddard [51] 

investigated the effect of the choice of the i value to the computational results 

for the ground state of  Li, H3, and H4. They were also suggested  a 

generalization of the method which consists in the following – in the expression 

(63) for the wave function instead of using just one particular operator ˆ
iG  a 

linear combination of these operators is used whose coefficients are being 

optimized as well as the corresponding one-electron orbitals.  This method was 

named as spin-optimized GI method (SOGI). There were obtained equations  for 

optimal orbitals [51], which of course are much more complicated than in the GI 

methods. This fact makes the practical applications of the SOGI method 

difficult.  

 The basic results of [51] are the  following. Self-consistent energies and 

orbitals of the different GI methods are weakly dependent on the choice of the i 

values. The most changes occur in the density matrices, in particular, the spin 

density (105).  

 Table 4 shows the energies and spin and electron densities for the ground 

state 2S  of the lithium atom. 
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                                                                         Table 4  

The energy, spin and electron densities at the nucleus 

of Li atom depending on the choice of spin-functions 

Method (0)z  (0)  Energy, a.u. 

G1  0.2096 13.8646 –7.447560 

G2 (GF/EHF) 0.2406 13.8159 –7.432813 

SOGI 0.2265 13.8646 –7.447565 

HF 0.1667 13.8160 –7.432725 

Exp. 0.2313 –  –7.47807 

 

 In the third column of table 4 there are shown the values of the electron 

density at the nucleus of a lithium atom 

  
1

( ) ( ) / |
N

i

i

R r R 


      . 

 As seen from Table 4, the G1 method gives better results for the electron 

density and energy, whereas the GF method best describes the spin density. The 

energy dependence of the i value in (63) is connected with the fact that the 

equations for optimal orbitals (67) in different GI methods are  different. 

However, as it follows from Table 4, these differences are small. 

 Thus, we can conclude the following. Improving of the results obtained 

when going from the GI methods to SOGI approach, is not so important as with 

transition from Hartree – Fock method to GI, in particular, to GF/EHF method. 

On the other hand, the computational procedure in the SOGI method is much 

more complicated than in the EHF method. Therefore, to our opinion EHF 

method in its various versions and modifications will have more broad 

application in practical calculations of the electronic structure of molecules. 

 As noted above, the UHF approach is the simplest method to account for 

electron correlation and is widely used in the calculations of the electronic 
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structure of molecules and radicals [47, 51, 56, 58, 91, 92]. The UHF wave 

function (87) is not an eigenfunction of the 2Ŝ  operator. To eliminate this 

shortage there are usually applying so called total or partial projection of the 

UHF  wave function  to the state with the required spin multiplicity [56, 91]. It 

should be kept in mind that the projected wave function is no longer optimum 

relative to the variational principle. Therefore, its  adequacy to the real situation, 

in general, is not evident [56]. The next consisting procedure should be further 

variation of projected wave function to obtain the minimum of the total energy, 

namely, to use the EHF approach. Nevertheless, the UHF method with partial or 

complete projection leads  often to good agreement with various experimental 

data, including the hyperfine splittings in the ESR spectra of free radicals. In 

[58, 91, 92], The results of calculations in the UHF framework   with partial 

projection of the wave function for organic free radicals with a small number of 

electrons is given in [58, 91, 92]. 

 Benzyl radical С6Н5СН2 contains already quite a large number of electrons. 

There are known our results of ab initio calculations of benzyl in the basis of 

Gaussian functions under the UHF framework with full projection on the ground 

doublet state [57] and without projection [93 – 95]. It is useful to compare the 

results in both approximations. 

 The contribution of the doublet component in the non-projected wave 

function ( )UHF  of the benzyl radical [93 – 95] turned out be equal 95.4%, and 

the remaining 4.6% belongs to the quartet and the higher spin components. 

Contribution of the doublet component to the 2Ŝ  is 84%, and the quartet 

component is 15.7% [57]. This means that the spin projection in the UHF 

framework can substantially affect only spin characteristics of a radical but 

distribution of the electron density is almost not influenced. This conclusion is 

confirmed by numerical calculations [57]. 
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 Table 5 shows the distribution of the spin densities (C)z

  and (H)z  at the 

atomic nuclei of the benzyl radical calculated without projection [93 – 95] and 

there is also given a comparison of the calculated hyperfine splitting on protons 

with the experimental data.  

 As many calculations in the π-electron approximation [102 – 104], ab initio 

calculations have led to similar values of π-spin density (C)z

  at the ortho and 

para carbon atoms. Using the simple McConnell equation [99, 100], we obtain 

the same splittings at the ortho and para protons which is inconsistent with the 

experimental data [96 – 98]. However, the direct calculation of the spin density 

at the protons (H)z  leads to the correct ratio of the corresponding splittings. 

From the analysis of the occupation numbers of natural orbitals calculated from 

UHF wave functions before and after projection, it was shown that the 

evaluation of the spin density after projection can be performed practically 

without loss of accuracy from non-projected values multiplied by  / ( 1)S S  [57]. 

It was shown that this rule is asymptotically exact at N  [6, 10, 105].  

                                                                                             Table 5 

The spin densities and hyperfine splittings Ha  in the benzyl radical 

calculated according to the UHF framework  without  projection 

Atom (C)z

  Ha , Oe (H)z  Atom 

Calc.* Experiment Calc.** 

[96] [97] [98] 

Co   0.2760  –7.45   5.14   5.15   5.08 –5.88 –0.0116 Ho 

Cm –0.1916   5.17   1.79   1.75  1.7   3.95   0.0078 Hm 

Cp   0.2757  –7.44   6.14   6.18    6.18  –6.18 –0.0122 Hp 

Cα   0.7671 –18.72 16.35 16.35 15.7 –17.74 –0.0350 Hα 

* Calculated according to the McConnell equation [99, 100] with the constants    

H

CH 27Q    and 
2

H

CH 24.4Q    Oe [101]. 
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**Calculated according to the equation H H (H)za Q   with constant HQ , equal to 

the hyperfine splitting in the free hydrogen atom (506.82 Oe). 

 Significant progress in understanding the properties of carbon-chain 

polymeric systems has been achieved due to the use of different versions of the 

Generalized HF approaches [106]. Thus, the relative simplicity of UHF 

equations has allowed to perform a number of analytical calculations of infinite 

polyene chains [16, 107 – 110], long polyene radicals [6, 105], cumulenes, 

polyacenes, and graphite [17, 111], long polyene chains with impurity atoms [7] 

and take into account the end effects in long polyenes and cumulenes [10]. 

These calculations have allowed, in particular, to make conclusions about the 

physical nature of the dielectric properties of such systems [16], which was 

further confirmed for polyenes by exact solutions [112]. However, the use of the 

instant UHF approach leaves some doubt primarily because the wave function in 

this method does not have the correct spin symmetry.  Fortunately, this difficulty 

was overcame surprisingly easily in the calculations of systems with a large 

number of electrons ( 1N ). It was found [10] that the self-consistent equations 

for the orbitals in the EHF method  asymptotically  ( N  ) coincide with the 

similar equations in the UHF methods:   

 0 0

1EHF UHFE E
N

 
  

 
.  

Consequently, the energy characteristics of long polyene chains (the ground 

state energy, the spectrum of low-lying excitations) obtained by UHF methods 

are preserved if passing to EHF approach. 

 Now we turn to theory of electronic structure of long polyene neutral 

alternant radicals based on the different orbital for different spins SCF method. 
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Chapter 3.  Electronic Structure of Long Neutral Polyene Alternant 

Radicals by the DODS Method 

 As shown above the simplest method to account for correlation between 

electrons with different spins consists in using different orbitals for different 

spins (DODS). McLachlan [113], considering the polarization of closed shells in 

a radical due to the field of its unpaired electron, suggested a simple method for 

the calculation of the spin density based on the DODS approach. His method is 

restricted by applicability conditions of perturbation theory [114, 14, 34]. In this 

chapter we suggest a method for the calculation of alternant radicals which is 

free from this defect and which is more congruous from the point of the self-

consistency procedure. This method will be applied to long neutral polyene 

radicals with the emphases to the spin properties of the wave functions in the 

DODS approximation. The second quantization formalism [115] will be used.  

3.1 The DODS method for alternant radicals 

 Consider a system with 2n electrons in the state with closed shells. In the 

one-particle approximation the corresponding Hamiltonian correct to a constant 

is   

 0

0
ˆ ˆˆ ( ) i i

i

H i A A 



  , (106)  

where ˆ
iA

  and ˆ
iA  are creation and annihilation operators of an electron in the 

state ( )i r  with spin σ, the real functions ( )i r form a complete orthonormal set, 

the variable σ takes two values +1/2 and –1/2 (in units of ), and 0( )i  is the 

orbital energy in the state i. The corresponding wave function for the ground 

state is   

 0

1

ˆ ˆ 0
n

i i
i

A A 

 


  . (107) 

 Let us add one more electron to this system filling the state with 

i p ,  and choose as zero approximation the function 
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  (0)

0
ˆ

p
A


   . (108) 

The corresponding Hamiltonian for a system with 2 1N n   electrons in the 

SCF approximation will be written as    

 0

0
ˆ ˆ ˆ ˆˆ ˆ ˆ ( ) ( , )i i i j

i ij

H H V i A A V i j A A    

 

       , (109) 

where, using standard notations for the integrals, 

  ( , )V i j ip jp ip pj 



  . (110) 

 To the first order of the perturbation V̂ the following expression for the spin 

density is obtained   

 (1) (1) (1)( ) ( , ) ( , )r R r r R r r
 

  , (111) 

  (1) 2

0 0

( ) ( )
( ) ( ) ( )

( ) ( )

i j

p i j

ij

r r
r r ip pj n n

i j

 
 

 
  


 , (112) 

where in are the occupation numbers for the state 
0 , and the one-particle 

density matrix is 

  (1) (1) (1)ˆ ˆ( , ) | | ( ) ( )i j i j

ij

R r r A A r r        , (113) 

where (1)  is the first-order wave function for N electrons.  

 Using a representation of orthogonal AOs 

  ( ) ( )i ir C r 



  , (114) 

one obtains from (112) the familiar McLachlan expression for the elements of 

the spin density matrix   

 (1) (0)

0 0
( )

( ) ( )

i j i j

i j p p

ij

C C C C
n n C C

i j

   

    



  
 

  


 , (115) 

  (0)

p pC C    , (116) 

     . (117) 

 Expressions (12) and (115) are valid if the applicability conditions of 

perturbation theory  

  0 0| ( ) ( ) | ( , ) ( )i j V i j i j    (118) 
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are satisfied. To eliminate conditions (118) we shall account for the polarization 

of closed shells of a radical without the use of the perturbation theory. 

 We shall consider large neutral alternant radicals ( 1N ) for which 

conditions (118) break down. For these systems Hamiltonian (109), neglecting 

terms of order 2N  , can be written as   

 

(1 ( 1)/2)

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ [ ( )( ) ( )( )]i i i ii i i i

i
i N

H i A A A A a i A A A A        


    

  

    , (119) 

where 

  0 0 0( ) ( ) ( ), ( ) ( , ), ( ) ( , ), ( ) ( ),i i i i V i i a i V i i i N i                        

and we  suppose  in  the  following  that  the  unpaired  electron  occupies  the  

non-bonding  orbital ( 1) / 2p N   with 0( ) 0p  . 

 The Hamiltonian (119) can be diagonalized by the following canonical 

transformation of the annihilation operators  

  1/2ˆ ˆ ˆ[ ( ) ] ( )i i iA B i B i        , (120a) 

  1/2ˆ ˆ ˆ[ ( ) ] ( )i i iA B i B i        , (120a') 

  1/2ˆ ˆˆ [ ( ) ] ( )i i i
B A i A i   

    , (120b) 

  1/2ˆ ˆˆ [ ( ) ] ( )i ii
B A i A i   

    , (120b') 

and similar expressions for the creation operators, where  

  2( ) 1 ( )i i    , (120c) 

and ( )i  are certain real values. It is easy to show that the operators ˆ
iB , ˆ

iB

  as 

well as the operators ˆ
iA , ˆ

iA

  satisfy the same commutation rules. 

 The transformation (120) mixes orbital ( )i r  only with its complementary 

orbital, and the mixing coefficients ( )i  may be different for different spins. 

See also [116] where a charge-density wave state has been discussed using a 

phasefactor in (120) which may depend on spin. 

 Substituting (120) into (119) one obtains 
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0 2 1

(1,2,..., 1)

ˆ ˆ ˆ ˆ{ ( ) ( )
ˆ

ˆ ˆ ˆ ˆ[2 ( ) ( ) ( )(1 ( ))] ( )( )}

i i i i

i
i i i in

i B B i B B
H

i i a i i i B B B B

     


       

 

  

 

   



 


    
 , (121) 

where  

  0 2 1( ) { ( )[1 ( )] 2 ( ) ( )} ( ) ( )i i i i a i i i               , (122a) 

  0 2 1( ) { ( )[1 ( )] 2 ( ) ( )} ( ) ( )i i i i a i i i                . (122b) 

 Adjusting the coefficients of the non-diagonal terms in (121) to zero an 

equation for ( )i  is obtained 

  2 0( ) 2 ( ) ( ) / ( ) 1, ( ( ) 0)i i i a i a i         (123a) 

  ( ) 0. ( ( ) 0)i a i     (123b) 

 Equation (123a) has always a root not exceeding 1 by module 

( 1,2,3,..., )i n , which will be used in the following. The non-bonding orbital 

( )p r  is not affected by the transformation (120). Nevertheless the energy levels 

( )p  may be displaced. It can be shown from (119) – (123) that the results are 

not changed if one formally says that the orbital ( )p r  mixes with itself. It 

follows from (123) that | ( ) | 1p  . 

 For the values ( )i  satisfying the Equations (123) the Hamiltonian Ĥ  has a 

diagonal form and the ground state wave function is   

 

( 1,2,..., )

ˆ ˆ 0i p
i

i n

B B



 





   . (124) 

 In the state (124) the first order density matrix and the spin density are   

          
1 2

1

ˆ ˆ( , ) | | ( ) ( ) ( ) ( )

( ){ ( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( ) ( ) ( )]},

i j i j p p

ij

n

k k k kk k k k
k

R r r A A r r r r

k r r k r r k r r r r

   

  

    

         









     

       




  (125)   

 ( ) ( , ) ( , )r R r r R r r
 

  . (126) 

 Substituting (114) into (126) and using the pairing relation   
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 1( 1) kk
C C



  , 

one obtains for the spin density on atom     

 2 2

1

( ) ( )
( 1) 2

( ) ( )

n

p k

k

k k
C C

k k



  

 
  

  

 
    

  
 . (127) 

 It should be noted that in the general case the Hamiltonian (119) and the 

wave function (124) are not self-consistent. In other words, the Hamiltonian in 

the Hartree – Fock approximation built on function (124) does not coincide in 

the general case with (119). The problem of self-consistency is to be solved  

accounting for the specific form of the matrix elements ij ks .We shall consider 

below a case when self-consistent values of ( )a k  can be determined for a 

Hamiltonian of type (119). 

3.2 Calculation of Properties of Long Neutral Polyene Radicals  

by the DODS Method 

The Hartree – Fock solution of the Schrodinger equation for long polyene 

radicals will be found and the corresponding expression for the spin density will 

be compared with the McLachlan formula [113]. The eigenvalues and 

eigenfunctions of the Hamiltonian (106) are taken as 

  0( ) 2 | | cos( )i i    , (128a) 

  
1

2
( ) sin( ) ( )

1

N

i r i r
N





   




 , (128b) 

where / ( 1)N   , N is the number of atoms in the polyene chain. In the 

following we will consider a case when 1N  and omit all terms 21/ N . For 

large N the solution (128) are close to the self-consistent ones. The matrix 

elements ( , )V i j in (109) will be calculated in the zero differential overlap 

approximation accounting for Coulomb integrals   only for nearest neighbors 
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and using the following notations: 1 , 1 2,       . The last approximation is 

based on [117 – 119]. 

 The first case to be considered is that when 2 0  . Substituting (128) into 

(109) the following parameters of the Hamiltonian (119) are obtained 

  1( ) ( ) . 0
2

a k k k
N

  

 
 



 
     

 
. (129) 

 The Hamiltonian (119) with the parameters (129) is not self-consistent 

since it is built on the zero order wave function (108) and its diagonalization 

corresponds to the first iteration of the self-consistency procedure. Performing 

the latter step-by-step the following expression for the Hamiltonian on the rth 

iteration is obtained   

( ) 0 ( ) ( )

(0 /2)

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ[ ( )( ) ( )( ) ( )( )]r r r

k k k kk k k k
k
k

H k n n k n n a k A A A A W        



   

 

        , (130) 

where  

  ˆ ˆˆ ,k k kn A A  

  

  
( ) (1)

( 1) 1

2 2 ( ) 2

1 ( ) ( )
( ) (1 )

2 2 4 cos [ ( )]

r
r

kk
rk

a k n k
a k

N k a k

 









  





 
  

 
 , (131) 

and (1) ( )n k
  are the occupation numbers in the state (108), 

  

4
( ) ( ) (0) ( )1

1

1 2 3 4

ˆ ˆˆ ( , ) , ( , ) 0, | ( , ) | 1,

2 , 2 , 2 2 , 2 2 .

r r r

k s

ks

W f s k A A f s k f s k
N

s k s s k s s k s s k s

 





 





  

         

  (132) 

 The final solution will be found in the following way. Taking ( )ˆ 0rW   and 

using Equations (131) the self-consistent values of ( )a k  are determined. 

Diagonalizing the Hamiltonian (119) with the self-consistent parameters ( )a k  

the ground state wave function is obtained in the form (124). Then ( )ˆ rW is taken 

into account by perturbation theory. The convergence of the perturbation series 
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will indicate the correctness of this treatment. In other words, the method of 

compensation of ―dangerous‖ diagrams developed by Bogolyubov [120, 121] 

for solving problems in the theory of superconductivity is used. It will be clear 

later that the ―dangerous‖ diagrams in the sense of the convergence of 

perturbation series are the non-diagonal terms in (119). This means that (123) is 

the equation for the compensation of ―dangerous‖ diagrams. 

 We shall now find the self-consistent values of the parameters ( )a k . 

Neglecting in the left part of (131) terms 1/ N  one obtains 

  
/2

( 1) ( )1

2 2 ( ) 2
0

2 4 cos [ ]

r r

r

dx
a a

x a



 





 







 


 . (133) 

The values of ( )ra  for 0,1,2r   and N   are given in Table 6. 

 

                                                                      Table 6 

  Values of the parameters ( )ra  for Hamiltonian (130)   

r ( )ra


 ( )ra


 

0 0 1

N


  

1 1 ln N
N


  1

N


 

2 1 ln N
N


  1 ln (ln ln ln )N N N

N


  

 It is seen that ( )| |ra  increases as r becomes larger. The reason is that the 

integral in the right part of (133) has a logarithmic singularity at ( ) 0ra  . If one 

takes ( ) ( ) ( )r r ra a a
 
    then the self-consistency condition ( ) ( 1)r ra a a 

   leads to 

the equation   

 
1

4 | |
( )xK x

 


  , (134) 
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where ( )K x  – elliptical integral of the first order, and 2 2 2 24 / (4 )x a   .  

 Equation (134)  has  a  root  for  a  certain  0a    [122].  For  reasonable  

choices  of  parameters 1( / | | 5)    the value of a satisfying Equation (134) is 

limited  by 2 | | /3 0a   . Thus, certain self-consistent values of the parameters 

of the Hamiltonian (130) exist: 

  ( ) ( )a k a k a
 

   . (135) 

Substituting (135) into (122) the following expressions for the energy levels 

correct to 1/ N  are obtained 

  2 2 2( ) ( ) 4 cosk k k a      , (136a) 

  2 2 2( ) ( ) 4 cosk k k a       (136b) 

since according to (123a) and (135)  

  
2 2

2

2 | | 4 cos
( ) ( ) ( ) cos 1

k
k k k k

a a

 
  
 

       . (137) 

 It follows from (136) that ( / 2) , ( / 2)a a   
 

    since the levels ( / 2) 


 

and ( / 2) 


 are absent according to (120b) and (137).  

 One sees from (136) and (137) that self-consistency leads to a splitting of 

the energy spectrum with 2N levels into to bands, each with N levels. The wave 

function (124) corresponds to the ground state of a chain with all levels ( )k  

filled and ( )k  empty. One notes also that according to (136)  

( ) ( ) ( )k k k  
 

   and ( ) ( ) ( )k k k  
 

  . The width of the forbidden zone 

between filled and empty bands is equal to 2a. An analogous solution for 

polyenes with even number of atoms has been obtained in [16, 109, 110]. It was 

also established that this state is energetically more stable than the Hartree – 

Fock state (128). Theory of the local electronic states in long polyene chains 

with an account of electronic correlation as in the present approach will be 
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discussed below in connection with the nature of the forbidden zone which is 

still not clear enough physically.  

 It can be shown that an account for perturbation (132) in the first and 

second orders changes the elements of the density matrix ˆ ˆ
k kB B 



  by values 

1/ N and that the contribution to the energy equals (1) (2)

0 0E E Const    . Thus, 

the effect of the perturbation (132) can be neglected. On the other hand, as 

follows from Table 6, perturbation theory is not applicable to the Hamiltonian 

(130). The reason is that the interaction between levels with / 2k   is important 

even for small ( )a k . The use of the compensation principle permits to account 

exactly for the contribution of all terms in the Hamiltonian (130) which violate 

the convergence of the perturbation series. 

  It will be shown now that an account for the integrals 2  in the matrix 

elements of the electronic interaction does not change qualitatively the results 

obtained above. In this case Equation (131) becomes 

  

(1)

1 2 2 2 2

(1)

2

2 2 2

1 1 ( ) ( )
(1 ) (1 cos2 )

2 2 4 cos ( )1
( )

2 ( ) ( )
(1 sin sin )

2 4 cos ( )

kk kk

k

k

a k n k
k

k a k
a k

N a k n k
k k

N k a k

 





 



   






 
 





  
   

  
 

  
  
   




. (138) 

 Supposing ( ) ( ) ( )a k a k a k
 

    and neglecting in (138) all terms 1/ N  one 

obtains for ( )a k  the equation 

  
/2

1 2 2 2 2
0

1 ( )
( ) ( sin sin )

2 4 cos ( )

a k dk
a k k k

k a k



 
 

 
 

 
 . (139) 

 The solution of (139) can be found in a form 

  1 2( ) sina k c c k  , (140) 

where   

 
/2

1
1 2 2 2

0

( )

2 4 cos ( )

a x dx
c

x a x




 



 , (141a) 
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/2

2
2 2 2 2

0

( )sin

2 4 cos ( )

a x x dx
c

x a x




 



 . (141b) 

 The dependence of the one-particle energies ( )k  on k  is determined by 

the following relations 

  2 1( ) {2 cos [1 ( )](1 ) 2 ( ) ( )} ( )k k k k a k k                   (142a) 

with   

 0 ( ), 0 ( )
2 2

k k
 

         

and  

  2 1( ) { 2 cos [1 ( )](1 ) 2 ( ) ( )} ( )k k k k a k k                    (142b) 

with  

  0 ( ), 0 , ( )
2 2

k k
 

       

where 

  
2 1 2

2
(1)2

/ , ( ) / ,

( )
( )cos .

| | ( )k

N N

k
n k k

N k


 



    

 



 
    

 



 

In this case, as follows from (142) and (140), the energy spectrum with 2N 

levels also splits into two bands , each with N levels. The distance between these 

bands is equal to 2 ( / 2)a  . As above, the effect of the perturbation Ŵ  can be 

neglected. 

 Thus, the inclusion of the Coulomb repulsion integrals for electrons on 

neighboring atoms  of a chain into the matrix elements does not change 

qualitatively the previous solution. The quantitative aspects are determined by 

the relations between parameters  , 1 , and 2 . 

 Expressing the parameters ( )k  in (127) through ( )a k one obtains for the 

spin density   
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2( /2)

1

2 2 2

2 4 ( )sin
sin ( 1)

2 4 cos ( )k

a k k

N N k a k

 






 









  


 . (143) 

We note that for N    the  spin  density   according  to  (139)  and  (133)  

has  a  finite  limit: 0 | | a  . 

 Now we shall consider the spin density in a long polyene chain which 

results from McLachlan’s method [113]. Substituting (128) into (115) and 

accounting only for 1 2( 0)    one obtains 

  
2( /2)

(1) 1

2

2 2 sin
sin ( 1)

1 2 ( 1) cosk

k

N N k

 






  







  
 

 , (144) 

where 1 | | /2   . 

 For N  the second term in (144) is estimated as 

  
/22 2( /2)

1

2

0

2 sin 2 sin ln
( 1) 0. ( )

( 1) cos cosk

k k dk N
N

N k N k N

  




    

 






   


   

 Thus, McLachlan’s method gives incorrect asymptotic behaviour for the 

spin density in a polyene chain with N  . The reason is that McLachlan’s 

formula was obtained in the first order of the perturbation over non-diagonal 

terms in the Hamiltonian (130). As we already know, perturbation theory is not 

applicable to the operator (130). Contribution to   in the second order is equal 

to 2(ln ) / ( )N N N   which supports our conclusion. 

 Results obtained so far indicate that in systems like long polyene radicals 

the Hartree – Fock solution (128) is unstable relative to a small perturbation 

caused by the spin polarization of closed shells in a radical.  

The existence of this perturbation in the Hamiltonian leads necessary to a state 

described by the wave function with different orbitals for different spins. The 

possibility of existence of these states in systems like alternant hydrocarbons has 

been discussed in [107] by the use of Green functions and thoroughly 

demonstrated in [67].  
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3.3. Projection on Pure Spin State 

 It follows from (120), (124), and (137) that the solution obtained above 

corresponds to the DODS type and therefore is not an eigenfunction of operator 

2Ŝ . This fact can be expressed in the following equivalent form which seems to 

us more visual if the representation of occupation numbers is used, namely: in 

the DODS method the operator 2Ŝ  does not commute with Hamiltonian. The 

equivalency of both statements is proved by the use of one of the main theorems 

in quantum mechanics: two operators commute if and only if they have a 

common system of eigenfunctions [123].  

 The following statement can also be proved : a Hamiltonian of the type   

 
1

ˆ ˆˆ ( , ) i j

ij

H h i j A A  



   

commutes with the operator 2Ŝ  only if one of the following two conditions are 

satisfied   

 
(1) ( , ) ( , ),

(2) ( , ) ( , ) , ( , ) ( , ). ( )

h i j h i j

h i i h i i Const h i j h i j i j

 

   



   
  

 To prove this it is necessary to calculate the commutator 2

1
ˆ ˆ[ , ]S H  . The 

expression for an operator 2Ŝ  in the second quantization representation may be 

found in [115]. For our case 

  2

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ[ , ] [ ( , ) ( , )]( )

l j j k l j j k
lkj

S H h l k h l k A A A A A A A A   

         
   . (145) 

Expression (145) proves our statement. For the Hamiltonian (119) with 

parameters (135) and (139) conditions (1) and (2) above are not satisfied 

because 

  ( , ) ( , ) ( ) ( ) 2 ( )h k k h k k a k a k a k
   

     . 

 Using traditional rules for the calculation of averages let us determine the 

average value of the operator 2Ŝ    
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 2 2 2 21ˆ ( ) ( , )
2 2

S S

kl

N
S m Sp R R m k l

 
        , (146) 

where  

  ˆ ˆ ˆ, ( , ) ( , ) ( , ), ( , ) .z S k lS m k l R k l R k l R k l A A   

 
         

Expression (146) is valid for any state described by a single-determinant real 

function. Taking the function (124) with parameters ( )k  from (137) one 

obtains the following  expressions  correct  to 1/ N    

  
2 2 2

( , )
4 cos

kl
kl

a
k l

k a


 


 


, (147a) 

  2

2

3ˆ
4 2 1

d N
S

d
   


 (147b) 

with | | /2d a  . 

 It is seen from (147) that the average value of 2Ŝ  in the states described by 

(123), (124), and (133) – (143) is proportional to the number of electrons N. To 

estimate the spin density quantitatively projection on a pure spin state is 

important [58]. One notes that when the parameters a  or ( )a k  satisfy 

equations (133) or (134) then the operators ˆ
kB 

 correspond to the states 

described in the coordinate representation by orbitals like AMO 

  ( ) cos ( ) sin ( )k k k kk
r x r x r 


     , (148a) 

  ( ) cos ( ) sin ( )k k k kk
r x r x r 


     . (148b) 

 The parameter kx  is related to the parameters ( )a k  by the relation   

 
2 2 2

( )
sin2

4 cos ( )
k

a k
x

k a k



. (149) 

 Projection on the lowest doublet state of the wave function (124) with 

parameters ( )a k  satisfying Equations (134) and (139) by the method due to 

Harriman [] leads to the following expression for the spin density   
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21/2 1/2

1 11/2 1/2

2
1 1/2

2 2 2
1 1/2

2 2 ( ) 4 ( )
sin 1 1 1 sin ( )

2 3 3

4 ( ) ( )sin ( )
( 1) ,

3 4 cos ( ) ( )

n n

i i

n

i

i i
i

N N

i a i i

N i a i





  
  

 

   

   

 





     
        

     

 
 

 



  (150) 

where according to [124]   

 

1

0

2 1
( 1)

n
k

s k

k

s k
B

k






  
   

 
 , (151a) 

            

1
1

0

2 1
( ) ( 1) ( )

n
k

s k

k

s k
i B i

k







  
   

 
 , (151b)   

 
1 2 1

2

2 2 2
{ , , ... , }

( )

4 cos ( ) ( )

k

k

n

k m

k

m m m m m

a m
B

m a m



  

 
 
 



 
  

 
  , (152a) 

         
1 2 1

1

2

2 2 2
{ , , ... , }

( )

( )
( )

4 cos ( ) ( )

k

k

j i

n

k m

k

m m m m m
m m

a m
B i

m a m



  

 
 
 




 
  

 
  , (152b) 

2 1s   is the state multiplicity required, 
!

!( )!

n n

k k n k

 
 

 
, summation in (152) is 

carried out over all possible choices of k  numbers from {1,2,..., }n . It can be 

shown that for N   (n = N/2) the values of kB  from (152) may be represented 

as  

  
2

1 1 1 1

0 0 0

( ) ( )
( ) ( ) ( )

! !

kk kx x k k

k k k k k

N N F N
B f x dx f x dx f x dx

k k


 

 
 

   
       
   

   , (153) 

where    

 
2

2 2
( ) ,

1 2 cos 2 1

d d
f x

d x d
 

  
,  

and according to [125]   

 
0

( ) ( ) 2 arctg 2 tg
2

y
y

F y f x dx  
 

   
 

   

with    

 (0) 0, ( )F F    .  
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 In an analogous way one obtains for ( )kB i   

  
1( ) ( )

( ) 2 ( )
! ( 1)!

k k

k

N N
B i f i

k k

 




 


. (154) 

 Thus, the expression (151) for 1/ 2s   become 

  1/2

0

( )
2 ( 1)

( 2)!

kn
k

k

N

k






 


 , (155)   

 
11

1

1/2 1/2

1

( ) ( )
( ) 2( 1) 4 ( ) ( 1)

( 2)! ( 2)!

n kn
n k

k

N k N
i f i

n k

 
  






    
 

 . (156) 

 A general term in (155) and (156) ( ) / ( 2)!kN k   has a maximum for 

k N x     

 
5/2( 2)!

x xx e

x x
. (157) 

For / 2k n N   one obtains   

 
/2

/2 5/2 5/2( )
(2 )

2 !
2

N
NN

e N N
N


  

 
 

 

 (158) 

Since it follows from (133) that for reasonable choices of the parameters 2 1/3  .  

 From the theory of alternating series [125, 126] increasing the upper limit 

of summation n in (155) and (156) to infinity leads to an error less than 5/2N  . 

Thus, the following equation is valid within this accuracy    

 1/2 2 2
0

2 2
( ) 2 ( 1) 2

( 2)!

k x
k

k

x e
x

k x x x






    


 . (159) 

For 1/2, ( ) 0N x  .  

 Noting that according to (156) 

  1/2
1/2 1/2

( )
( ) ( , ) 2 ( )

d x
x x i f i

dx


        

one obtains  

  1/2 1/2 3 2 3 2

2 1 2
( ) ( , ) 4 ( )

x xe e
x x i f i

x x x x
  

  
      

 
. (160) 

It follows from (160) and (159) that   
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 1/2

1/2

( )
1 . ( )

i Const
N

N



 
   . (161) 

Substituting (161) into (150) one obtains   

 
/2 2

1

2 2 2
0

4 ( )sin
( 1)

3 4 cos ( )

a x x dx

x a x










 

 


 . (162) 

 Comparing (162) and (143) one sees that the projection lowers the 

amplitude of alternation of the spin densities on chain atoms by a factor of three. 

Nevertheless, for N   the amplitude of alternation of the spin densities | |  

remains different from zero. Relative values of the spin densities on different 

atoms are not affected by the projection. 

 It was shown in paragraph 4.2 that the solution of the SCF equations for 

long polyene radicals by the DODS method leads to lower ground state energy 

compared with the traditional solution (128). The state corresponding to the 

latter is unstable with respect to a perturbation polarizing the closed shells of a 

radical. Comparing expressions (134), (136), and (143) with the results of [16] 

one notes that the appearance of an unpaired electron in the long polyene chain 

does not affect the main characteristics of the system. This is a natural 

consequence of Koopmans’ theorem [75]. 

 However, there is a certain difference in the properties of a long polyene 

with an even number of electrons and in long polyene radicals. If an electronic 

system has zero value of the spin projection ˆ
zS  then the spin density is 

identically equal to zero [127, 124]. A radical has a non-zero eigenvalue of ˆ
zS  

and the latter conclusion is not valid. In fact, from (162) the projection of the 

wave function on to a doublet state leads only to quantitative changes in the spin 

density distribution. Therefore the DODS method predicts antiferromagnetism 

in long polyene radicals. There is here no contradiction with physical intuition 

which tells us that an addition of one electron to a large system must not affect 

its properties because, first of all, the spin of a system changes on a finite value 
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and, secondly, as already mentioned above, main characteristics of the system 

including its energy are not changed by addition of one electron.  

 In the absence of experimental data we cannot compare the theory with 

experiment and insist on the indisputability of results obtained. In fact, the non-

projected DODS method describes incorrectly the spin properties, for any non-

relativistic Hamiltonian must commute with the operator 2Ŝ . After projection 

the wave function (124) is no longer an eigenfunction of the Hamiltonian which 

casts doubt on its adequacy as a true solution. On the other hand the DODS 

methods seems to be the best one in its account of electronic correlation in the 

one-particle approximation. Thus, the correct way to account for the spin 

polarization requires repudiation of the one-particle approximation. In fact, as 

follows from paragraph 4.3, it is impossible to write down a one-electron 

Hamiltonian which accounts for the spin polarization correctly and at the same 

time commutes with the operator 2Ŝ . It follows from (136) and (142) that a 

finite forbidden zone appears in the spectra of one-particle eigenvalues of the 

antiferromagnetic state (124) of the polyene radical, and this state is separated 

from the usual state (128). Extrapolation to N   of the experimental data 

leads to a certain finite value of the frequency of the first electronic transition in 

the absorption spectra of polyenes [16]. It has been also shown in [16] that the 

correlation gap 2a is close to the interpolated experimental value. Nevertheless it 

should be noted that the interpretation of the excited states in the DODS method  

is still not clear. The antiferromagnetic state in long polyene radicals obtained 

above is, as suggested in [107], one of the phase states in systems like large 

alternant hydrocarbons. 

 Now we come back to the local electronic states in polyene  chains  with  

an  impurity  atom (§ 2.2) using unrestricted Hartree – Fock approach.  

 



76 
 

Chapter 4. The Influence of an Impurity Atom on π-electronic Structure of 

Long Polyenes using the UHF Approach 

 It is well known from optical experiments [128] that the frequency of the 

first electronic transition in polyenes tends to a non-zero value when the polyene 

chain is lengthened. Until recently this energy gap was supposed to arise from 

the instability of the equal-bond polyene configuration with respect to the bond 

alternation [129, 130]. Nevertheless, it has recently been shown that the 

unrestricted Hartree – Fock (UHF) approach taking into account electron 

correlation can be used to describe the π-electronic spectra of large conjugated 

systems like polyenes, cumulenes, polyacenes, and graphite [16, 17, 107, 109 – 

111, 108, 6]. Note that the papers [6, 16, 108] have dealt with the electronic 

structure of regular ideal polyene chains consisting of an even [16, 108] or odd 

[6] number of carbon atoms.  

 Comparing with experiment only the values of energy gaps, obtained in the 

two different models, do not make it clear which of these models or their 

combination [131] is more realistic. One of the possible methods of 

investigating the electronic structure of any periodic systems is to study the 

influence of the appropriately introduced defects on the energy spectra of these 

systems. Thus, to study the effect of disturbed periodicity on the electronic 

structure of polyene chains by means of the UHF method is of interest. The 

same problem has been discussed in [1, 2, 4] under the assumption that the 

energy gap is due to the bond alternation. 

4.1 The UHF Solution for Long Polyene Chains with an Impurity Atom 

 As follows from paragraphs 2 and 4, the UHF equations for an ideal 

polyene chain  have the following general form in the orthogonal AO 

representation [6, 16, 108]   
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[ ] ( ) [(1 ) ( 1) (1 ) ( 1)],
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n C C C
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

     


    

       



 
   

 

       


 (163)    

where 0  and   are the Coulomb  and  resonance  integrals,   is  the  electron  

repulsion  integral,  

  (0) (1) 2

/2

[ ( )]k

k

n C 






     

are the electron populations of the µ-th AO with σ-spin, ,   . 

 The solution of (163) is defined by the relations 

  (1) 1 22
( ) [1 ( 1) ]sin / 1k k kC k

N



         , (164a) 

  (2) 1 22
( ) [( 1) ]sin / 1k k kC k

N



         , (164b)   

 (1) (2) 2 2 24 cosk k k a       , (165) 

where 1N  is the number of carbon atoms in the chain. The self-consistent 

value of a is found from the equation   
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2 2 2

0

(4 cos ) 1dk k a







  , (166)   

  2 2 2 1, ( )
[2 cos 4 cos ] / ,

1, ( )
k k k a a 


   



 
    

 
. (167) 

 The width of the forbidden zone between the energy levels (1)

k  occupied in 

the ground state and empty levels (2 )

k  is equal to 2a. It follows from (164) – 

(167) that 

  
/2 2

(0) 1 1

(2)

0

1 2 sin 1
( 1) ( 1)

2 2k

k
n dk



 
 

 


 

       . (168) 

 As seen from (168), the values of  depend on an atom number µ. The 

analysis of (168) shows that this dependence occurs near the chain boundary: 
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1

1

2



  



 
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 
, (169) 

where / 0.21, 0.06a       with 2.4 and 5.4eV eV    [16]. 

 Using the UHF method we now consider the electronic structure of a long 

polyene chain with the ν-th atom substituted. We make an assumption that such 

a substitution can be approximated by changing an appropriate Coulomb integral 

as  0 t   . As seen from (163), the change of γ corresponding to perturbed 

atom can be taken into account by an appropriate change of the effective value 

of α. We shall consider here such substitutions which can be described by the 

change of the parameters α and γ only, i.e. the values of β are considered to be 

close to those for ideal polyenes. There are a number of substitutions which 

satisfy the conditions above, e.g. 3H CH ,C N  .  

 The UHF Hamiltonian for polyenes (163) is a non-linear operator since it 

contains (0)n  (168). Therefore, a direct application of the local-perturbation 

theory [132] developed for linear Hamiltonians [20, 21, 24], e.g., for the tight 

binding method, requires an justification. The correct solution involves an 

iteration procedure usual for the calculations by the SCF methods. 

Consequently, one can use the local-perturbation theory for each iteration. The 

equation for eigenfunctions and eigenvalues in the case of long polyenes with 

the substitution has the following form for the first iteration, e.g., see [20, 21]   

 ˆˆ( ) 0H t z     , (170)     

where Ĥ  is given by (163), and operator ̂  is defined by   
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ˆ( , ) *( ) ( , ) ( ) *( ) ( )g g g
 

        


     . (171)  

 Let us present some general results which follow from [20,21]. Eigenvalues 

( )i

qz   of the Equation (170) are determined by   
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( ) ( )
,
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1 0
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k j k q

C
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






 


 . (172) 
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 It follows from (172) that a perturbation of type (171) gives rise to the 

infinitesimal shifts of zone levels 

  
( )

( ) ( ) ( )
i

i i ik
k k k

d
z

N dk
 

 
   . (173) 

The perturbation of the type (171) can also give rise to a local state splitting off 

zones. This question will be discussed in the next section. Now, we consider the 

effect  of  the  substitution  of  an  atom  placed  near the  end  of  polyene  chain 

( N ). Then the shifts in a quasi-continuous spectrum are determined by the 

equation (see Appendix below in § 5.3) 

 ( ) ( )

( ) 2

sin 2 sin 2
ctg 1 ( )

2 ( )sin sin 2

i i

k ki
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L k k
 
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  

  

 
     

, (174) 

where / | |t  , and 

  ( ) ( )1
( ) [ ( 1) ]

2 | |

i i

k kL a

   


   . (175) 

 The eigenfunctions corresponding to the eigenvalues (173) can be written 

as (see Appendix below in § 5.3) 

              
( )

( ) ( )2
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i
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kk kC k
N
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 
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2

i
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i ik
kk k

d
tC k

N dk
 


     , (178) 

where 

  
( )

( ) ( )2
( ) ( )sin , *

i
i i

kk kC C k k k
N N

 


      . 

It follows from (176) that the perturbation results in the phase shift of the 

eigenfunctions for  . In order to define under what conditions the relations 
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(172) – (178) correspond to the self-consistent solution of Eq. (170) we evaluate 

n
. Transforming (176) yields for the zone-state density at the µ-th atom   

/2
2(1) (1) 1 ( ) (2)

0

1
[ ] [ ( )] ( 1) [cos(2 2 )] / . ( )

2

i

zone k k k

k

a
n dk k





            


          (179) 

 Comparing (179) with (168) one can see that the perturbation effect on the 

zone-state density is transferred along the chain in the same way as the influence 

of its boundary, i.e. it sharply attenuates: | |2   times at the distance | |  . Thus, 

if 1   then (179) leads to (1) (0)n n  . It means that regardless of the non-

linearity of the UHF equations, the impurity effect is local as in the case of 

linear Hamiltonians. Following (179) one can obtain for the electron density at 

the impurity atom (see Appendix below in § 5.3) 

  (1) (1) (1)( )k k

k

d
n z

dt
     . (180) 

 Taking into consideration Coulson’s and Lonquet-Higgins’ relation [73], 

we reduce the expression (180) to the form 

  (1) (0)1
ln[ ( ) / ( )]

2
C

d
n z d M z M z

dt i
   


  , (181) 

where the integration is in the positive direction along the infinite half-circle 

( Re 0z  ) and imaginary axis in the complex plane z; ( )M z and (0) ( )M z  are 

determinants which vanish at the points ( )i

kz z  and (1)

kz  , respectively. The 

expression (181) can be written as [133] 

  (1)

0 0

1 1
ln[1 ( , ; )] ln[1 ( , ; )]

2 2
C C

d d
n z d t G z dz t G z

dt i i dt
      

 
      , (182) 

where the function  
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is the Green function:   

 0

1

ˆ[ ( , ) ] ( , ; ) .
N

H z G z   



     



      

 The equivalence of expressions (181) and (182) results from the fact that in 

accordance with (172) the functions in brackets in (181) and (182) have simple 

poles and zeros at the same points. Having failed to obtain general analytical 

expressions for (179) or (181) we now discuss some limiting cases. Let | | 1 . 

Then the integrand in(182) can be expanded in the series of      

  (1)

0 0

0

1
( , ; ) [ | | ( , ; )]

2

n

nC

n dzG z G z
i

        






  . (184) 

 According to (183) 0| ( , ; ) | 1G z     if z C . Therefore, the series in (184) 

converges regularly if | | 1   and z C . As a consequence, integrating (184) term 

by term yields 

  (1) (1) 2 (1)

0

[ ( )] [ ( )sin 2 / sin 2 ]n

k k

k n

n C L k k      
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

  . (185)  

 It follows from (185) that 

  (1) (0) ( ). | | 1n n     . (186) 

 Thus, if | |  is small, the solution of (170) given by (172) – (180) and 

corresponding to the first iteration of the self-consistency procedure for a long 

polyene chain with impurity is a self-consistent one. The equation of second 

iteration has the following form 

  (1) (0)

1

ˆ{ ( , ) ( , ) [ ] } ( ) 0
N

H t n n z     
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         



        . (187) 
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 Let us consider this equation for the case 1  , i.e. when the perturbation is 

localized at the first atom of the chain. It follows from (185) that 

  (1) (0) (1)

1 1

1

( 1) /n n

n

n

n n f    




      , (188) 

where (1) 0  , and 
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
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


 .   

As seen from (188), the correction (1)   to the perturbation has the opposite 

sign to the initial perturbation | |  . Consequently, if    is finite, the impurity is 

screened with zone electrons , as one should expect. It means that the effective 

value of the perturbation parameter | |   is less than | | . It is easy to verify 

using (185) that this result is also valid if 1  . 

 In order to evaluate differences (1) (0)n n   for    we now consider another 

limiting case: | |  . Then it follows from  (174)  that ( )i

k k   .  Hence,  the  

relations (176) – (178) take the form   
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| |

( ), ( )
( )
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lim

i

i k

k

C 




   
 

 

  
 


. (189) 

It follows from (189) that a strong perturbation tears the link consisting of   

atoms of the chain. It is obvious that the functions (189) are self-consistent for 

the chain consisting of N N   atoms because they coincide with the self-

consistent zone functions of an ideal polyene chain. Substituting (189) into (179) 

and using (168) and (169) one obtains    

 (1) (0)

1 2| | | | | | 0.09n n             . (190) 
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It means that the changes of values ( )n    are small even though the 

parameter | |  changes from zero to infinity. Thus, in order to obtain the zone 

functions ( ) ( )i

k   of a long polyene chain with the ν-th atom substituted ( )N  

as   , it is quite sufficient to restrict oneself to the first iteration  of the self-

consistency procedure for any value of the perturbation parameter λ. In 

particular, if 1   one can suppose that (1) (0) (1)

1( / )n n        . It means that 

the non-linearity of Eq. (170) can be neglected except for the fact that an initial 

perturbation parameter λ is to be replaced by its effective value , | | | |     . On 

the other hand, if 1   and | | 1  then functions ( ) ( )     are to be close 

to the corresponding functions of a short polyene chain consisting of 1    

atoms. It should be also noted that calculating (1)n -values, we neglect the 

contribution of local-state functions, which have the amplitude (see Appendix 

below in § 5.3)   

 0 0| | /2 | | /2| ( ) | ( )q q
p Const e e   
       , (191) 

where 0 0q   . Hence it is clear that the functions are localized near the 

substituted atom. If | | 1  then 0 1q , i.e. ( )p    ; if | | 1  then 

( )p    (see Appendix below in § 5.3). Thus, we are taking into account that 

the local-state functions does not affect the relations (186) and (190). 

4.2. Local States 

 General results obtained above can be used to consider the local electronic 

states in polyene chains with impurity.  

 As stated by Lifshits [20, 21] and Koster and Slater [24], the wave 

functions of local states are determined by the equations   

 0 ,

,

( ) ( , ; ) ( )G z t    

 

     



  . (192) 
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Here t  is the matrix elements of perturbation produced by substitution. If, for 

example, only one of the Coulomb integrals changes 0 0t       , then 

0
t t     . To solve (192) the following relation should be satisfied   

 0Det[ ( , ; ) ] 0G z t     
   . (193) 

 The relation (193) gives the equation for evaluating the energies of local 

states. Substituting ( )j

k  and ( ) ( )j

kC    from (164) – (165) into (183) one can obtain 

expressions for 0 ( , ; )G z    for the most interesting case of local states in the 

forbidden zone:   

 

2 1 | | | |

0

2 1 | | | |

0

1

0

0

(2 ,2 ; ) ( ) (2 sh ) ( 1) [ ],

(2 1,2 1; ) ( ) (2 sh ) ( 1) [ ],

(2 1,2 ; ) ( 1) ( sh ) [sh sh( 1) ], ( )

(2 1,2 ; ) ( 1) ( s

G z z a e e

G z z a e e

G z

G z

     

   

     

   

 

 

 

 

   

   

      

  

       

       

 



    

      

       

   1 |h ) [1 ] sh , ( )e e       






    

 (194)   

where   is given by the relation    

 
2 2 2

2

( 2 )
ch

2

z a 



  
  .  

 The Green functions determined by (194) are identical with those for a 

diatomic ( A B A B )          chain with equal bonds in tight binding 

approximation (see the expressions (8a) – (8d) in paragraph 2 above and (9) – 

(10) in [4] for 1 2   and z a  ). If the values of n  were independent of   

this fact would be considered as trivial because the Hamiltonian (163) and that 

which is used in paragraph 2 above and in [4] are identical. However, as follows 

from (168), n  depends on   and the self-consistent field near the end of a 

chain differs from the one in the middle of a chain. Thus, the Hamiltonian (163) 

differs from the Hamiltonian of [4] and coincides with the tight-binding 

Hamiltonian for the diatomic chain in the case of the specific change of the 
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Coulomb integrals A

  and B

  when increases. As the Green functions (194) and 

(8a) – (8d) in paragraph 2 above and (9) – (10) in [4] are identical, one can use 

the results of paragraph 2 and [4] to consider the conditions under which the 

local states arise. These conditions corresponding to the simplest perturbation, 

which is described by the change of the Coulomb integral of an atom or 

resonance integral of a bond, can be formulated as follows. 

 The infinitesimal change   of the Coulomb integral of an odd atom is 

sufficient to give rise to a local state in the forbidden zone.  

 On the other hand, the perturbation of an even atom with number 2l 

generates the local state in the forbidden zone only if    

 2 2 2 1 1
| | 2 ( 4 )a a

l
       . (195) 

 The wave function and the energy of the local state caused by the 

perturbation of the first atom will be considered in more details. Substituting 

1   and 1t t     into (193) one can obtain   

 0

01 ( )(1 ) / sh 0
q

pz d e q   
     (196) 

with  

  2 2

0ch 1 2( ), ,
| 2 |

p

p p

z
q d z z d



 


      (197) 

and  

          0

01 ( )(1 ) / sh 0
Q

pz d e Q   
      (198) 

with 

  2 2 2

0ch 2( ) 1, | | 1p pQ z d z d      . (199) 
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 As seen from (196), the infinitesimal change of the Coulomb integral of the 

first atom actually leads to the local state appearing in the forbidden zone. Its 

energy distance from the edge of the gap is equal to    

 2 2| | 1.1pz a a eV     .  

 In the case of large perturbation    the Eq. (198) gives for the energy 

of local state  

  
pz   . 

 Using the general equation (192) one can obtain the wave function of a 

local state, the first atom being perturbed   

 
0

1 1

2 2( ) ( 1) , ( is odd)
q

p p e
 

    
 



   (200a) 

               
0

2 2( ) ( 1) , ( is even)
q

p p e
 

     


   (200b) 

where 

  
0

0

2

22

1

1

q

p q

e

e












   

and 0q  are determined by (197). In accordance with (198) the larger the 

perturbation parameter the higher the degree of the localization of the wave 

function of the impurity level in the region of impurity. It can be shown that the 

situation is exactly the same when 1  . 

 If the perturbation of a chain can be simulated by a small change of the 

resonance integral of a bond, then it does not cause the local states to split off 

the allowed bands.  

 Derived above properties of local states differ essentially from those 

obtained under the assumption that the energy gap in the spectra of long polyene 

chains is due to the bond alternation []. In the latter case the perturbation giving 

rise to the local state  in the forbidden  zone  is 1/ l ,  ( l   being the number of a 
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perturbed atom) both for even and odd l . Thus. In contrast to the model above, 

the generation of a ―surface‖ state ( 1l  ) is most difficult. In addition, the 

appropriate change of the resonance integral of a bond (weakening of a stronger 

bond or strengthening of a weaker bond) leads to two local states appearing in 

the forbidden zone. 

 The recent theoretical results [111, 131, 134] provide an evidence in favor 

of the electron-correlation nature of the polyene-spectrum gap. But it appears 

likely that the question still remains doubtful (see, e.g., [135 – 137]). The above 

mentioned differences in the properties of local states can be used to study 

experimentally whether the energy gap is due to electron correlations or its 

appearance is a consequence of the bond alternation. 

 The results obtained so far seem to be useful in the study of the following 

question. In contrast to polyenes, the first optical transition frequency in the 

symmetric cyanide dyes tends to zero when the conjugated chain of the dye is 

lengthened [138]. Nevertheless, the long conjugated chains of cyanide dyes and 

polyenes differ by their end groups only. Then, it is natural to correlate the 

above difference in the optical spectra of these two classes of molecules with the 

effect of nitrogen atoms of the end groups of cyanide dyes. Indeed, the insertion 

of nitrogen atoms into the polyene chain can give rise to a local state near the 

bottom of an empty zone. As a consequence, the first optical transition 

corresponds to the transition  of an electron from this local level to an empty 

zone. The energy of this transition is small for long chains. Then, the 

extrapolation of experimental data can give zero value (or nearly zero value) of 

the first transition frequency. Let us also note that the conjugated chains of 

cyanide dyes consist of an odd number of atoms N. But,  the  number  of  π-

electrons Ne is even: 1eN N  . If 1eN N   then the local state considered 

above is occupied in the ground state. If 1eN N   then there is a hole in a 
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valence zone of cyanide dye and the explanation of optical experiments is 

trivial. 

4.3 Appendix 

 We first deal with the derivation of main relations used in § 5.1, namely, 

will consider the sum in (172): 

 

2 ( )( ) 2
( )

0 ( )( ) ( )
, 2 2 ( ) ( )

( ) ( )

sin [ ( 1) ]| ( ) | 4 1
( , ; )

2

[ ( 1) ] ( , ),

i vj
qi k

q ij i
k j k qi ik q

k q q q

i v i

q

kv aC v
G v v z

dz N N

N dq

a S q


 






 

 
  

  

   
    

  
  

  

 
  (A1) 

where we have used (173). To calculate ( )( , )iS q   we shall use the method 

developed by Lifshits [20, 21]. Let us denote 

  ( ) ( ) ( )

1 2( , ) ( , ) ( , )i i iS q S q S q     (A2) 

and evaluate each sum separately, namely: 

 

( ) ( ) ( ) 2 2
( )

1 ( )2 ( )
( ) ( )2 2 2 2 ( )

( )2

( ) ( ) 2 ( )
( )

2 ( / ) sin4 2 sin
( , )

2
( )

2sin 2 1

( / )
( )

i i i

q q qi

ii
k q qi iqi

q qk q k q q

i

q

i i i
ik qq q q

q

d dq kv qv
S q

dN d

dqN dq

qv

d dq N
k q k q

N










  



   



  






 

 
    

 

 
 

   
         





( ) ( )2
2

( ) ( ) ( ) ( ) ( ) ( )
0

1

2sin 1
2sin ctg ,

( / ) ( ) ( / )

i i

q q

i i i i i i
nq q q q q q

N

qv
qv

d dq n n d dq

 

 

 

       

 
 
 

    
              



 (A3) 

 
2

( )

2 2 2 2

4 sin 1 1 cos 1
( , ) ,

2 cos cos2

i

k q k q C

kv kv
S q dk

N k q N


  

  
   

   
   (A4) 

where  
C

 denotes the principal value of a corresponding contour integral taken 

from 0 to   . In order to evaluate (A4) we need to calculate 
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  1 2

cos
,

cos cos2
C

kv
I d k I I

k q
  

  (A5) 

where 

 
1

2

1
,

2 cos cos

1
.

2 cos cos

ivx

C

ivx

C

e
I dx

x q

e
I dx

x q













 (A6) 

 The integrals (A6) can be evaluated by the residue theory. The integral 1I  is 

taken along the contour C1, and 2I – along contour C2 (fig. 4). Calculations give   

 
sin

res .
2 cos cos sin

|
ivz ivz

z q

i e e vq
I

z q q









 


  (A7) 

 

   

  Fig. 4. The contours for the evaluation of integrals (A6). 

 The substitution of (A7) into (A5) and (A4) results in the relation 

  ( )

2 2

1 sin 2
( , ) .

2 sin 2

i vq
S q

q



   (A8) 

 Equation (174) can be obtained from (A3), (A8), (A1), and (172).  

 The eigenfunctions of (170) are defined as [20, 21]   
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( ) ( )

( ) ( )

( ) ( )
,

( ) ( )
( ) .

j j
i i k k

q q j i
k j k q

C C
t

z

 
 



 
  


 


  (A9) 

 The sum in (A9) is calculated just like as ( )

1 ( , )iS q  .  

 Let us evaluate a normalization constant ( )i

q , namely:   

 

2
2( )

( ) 2 ( ) ( )

( )
1

2
( )

( ) 2 ( )

( ) ( )

( )sin 2 1
[ ( )]

/

( )sin
2 ( ) 1.

( / )sin

iN
qi i i

q q qi
kq

i

qi i

q qi i

q q

C q
t k q

d dq N N N

C q
N t t

d dq



  





 



  
  



 
 

 





     
         

     

 
  

  

 
 (A10) 

Substituting ( )i

q  from (A10) into (A9) one obtains (176 – 178). 

 It follows from (A10) that 

  

2 1 1
( ) ( )( ) ( ) 2

( ) 2

( ) ( ) ( ) ( ) 2
, ,

( ) [ ( )] 1
( ) .

i ij j
q qi k k

q j i j i
k j k jk q k q

d z d zC d C
t

z dt dt z t dt

  


 

 


 

 

     
              
   (A11) 

Taking also into account that according with (A9) and (A10) ( ) ( )( )i i

q q    , one 

obtains (180). 

 Now let us consider functions 0 ( , ; )G v z  , where  

 2| |
( , 1 ),

2 | |

z
d d


    

i.e., for states splitting off zones. Using (164) and (165) one obtains 

  
( ) 2

0 ( )
, 0

[ ( )] ( 1)
( , ; ) (1 cos ) / ( cos )

| |

j

k

j
k j k

C z d
G v z dk k k

z



 


 
  

  

 
    


    (A12) 

where  

  2 2/ 2 | |, / 2 | |, 1 2( ).z z d a d z        
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The integral in (A12) is calculated as the integral (A5) except the poles of the 

integrand are in the complex plane k on the lines 2 2Re 0 ( 1 )k z d    and 

Re (| | )k z d  . Having carried out the calculations one obtains   

 
0

0

0

00

( 1) / sh , ( 0)cos

cos / sh , ( 0)

q

Q

e qk
dk

k e Q

 



 

  





  
 

 
   (A13) 

where 

  
2 2 2 2

0

2 2 2 2

0

ch 1 2( ), ( )

ch 2( ) 1. ( 1 )

q d z z d

Q z d z d

   

    
  

 Using (A13) one can calculate all functions 0 ( , ; )G v z   with 2 21z d   or 

2 2z d . In particular, one can obtain equations for local energies   

 01 ( , ; ) 0pzt G v z     (A14) 

and for corresponding functions  

  0( ) ( , ; )p p pzt G z       . (A15) 

 The relations (191), (194), (196) – (200) results from (A14) and (A15). If 

| | 1 , then it follows from (A13) and (A14) that 0 0 1q Q . Using (191) and 

(178) one can see that if | | 1  then   

 2 2 2 2

0 0(1 )sh , ( , )q

p t e q q q Q     

hence 2 2| ( ) |p   . (A16)  

 Finally we turn now to cumulenes which have two orthogonal π-systems, 

as compared with polyenes, and will end with the thorough discussion of the 

physical nature of the forbidden zone in quasi-one-dimensional electron 

systems. 
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Chapter 5. Basics of π-Electron Model of Cumulenes 

5.1 Introduction 

 Cumulene molecules have the general formula H2C=(С=)N-2СH2 and 

contain a linear chain of N carbon atoms. The inner N – 2 atoms are 

characterized by diagonal hybridization sp and are in the valence state didiπxπy.  

Hybridization of the end-C-atoms should be close to trigonal sp
2
, and these 

atoms can be in valence state trtrtrπx  or  trtrtrπy. Properties of cumulenes are 

discussed in several reviews [139 – 142]. Even cumulenes (EC) with the 

ethylene as the first member of ECs are known to be planar with symmetry D2h. 

In odd cumulenes (OC) with the allene [143] as the first member of OCs the two 

end-groups are perpendicular to one another with symmetry D2d. Both 

experimental facts are in accordance to valence bond theory. 

 The ease of cis-trans isomerization for the ECs or of stereoisomerization 

for the OCs is determined by the barrier height of internal rotation of the CH2 

end-groups. Rotation of one of the CH2 groups by 180
◦
 returns the cumulene 

molecule to its initial state. It is a natural suggestion that the barrier height is 

determined by the energy of such a molecular conformation in which one of the 

CH2 groups is turned by 90
◦
 in comparison with the most stable conformation. In 

the following under barrier height V we shall imply the difference between 

energies of the lowest singlet states of the molecular conformations with 

symmetry D2h and D2d.  

 The barriers V  in cumulenes were considered theoretically in [144, 145, 8, 

9]. Popov [145] used a simple Huckel method which leads to the conclusion  

that with an increase of the number of C atoms the barrier tends to zero which is 

actually simply obvious from physical point of view. σ-Bonds of cumulene 

chains have cylindrical symmetry and their energy does not depend upon the 

angle of rotation of the end-groups. Therefore if direct interaction of the end-

groups is neglected the barrier height is determined by the energy change of the 

π-electrons with the change of the molecular conformation.  

 Cumulenes CNH4 have 2N – 2 π-electrons. In accordance with the simple 

MO theory 2N – 2 levels can contain either N – 1 bonding levels and equally 

many antibonding levels in ECs or N – 2 bonding and equally many antibonding 

levels plus 2 nonbonding levels  in  OCs.  In  the  former  2N – 2 π-electrons 

occupy all N – 1 bonding levels; in the later – all N – 2 bonding levels and the 

two remaining electrons occupy the two-fold degenerate nonbonding level. The 
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first distribution is energetically more favorable than the second one. This is 

achieved for even N for planar conformations and for odd  N for twisted 

conformations. This may be considered as a simple explanation of the known 

experimental fact [142] that the stable conformation of the ECs is planar, but 

that of the OCs is twisted with perpendicular arrangements of planes of the end-

groups. This very interesting property of the cumulenes was in fact first 

explained by van’t Hoff [146] in 1877 using the tetrahedral model of the carbon 

atom.  

  

  5.2 Quantum-chemical model 

 Let us choose the coordinate system in a way so that in the conformation 

D2h π-AOs of the subsystem with N AOs are directed along x-axis and with N – 

2 AOs – along y-axis. The z-axis passes through the C atoms. Conformation D2d 

is formed by a rotation of one of the end-AO’s by 90
◦
. In this case the number of 

AOs which are directed along the x- and y-axis equals N – 1 in both cases.  

 In the conformation D2h πx-states have symmetry b2g and b3u, and πy-states – 

b2u and b3g. In the conformation D2d all π-MOs transform according to the 

irreducible representation e. Therefore in this conformation the frontier MOs 

(pair of nonbonding orbitals) is degenerated by symmetry. Accidental 

degeneration of the frontiers MOs in the conformation D2h remains in the Pariser 

– Parr – Pople (PPP) [147, 148] approximation also, for in this case zero 

differential overlap approximation is used. It is removed by alternation of the 

bond lengths.  

 The lowest electronic configuration of the cumulene molecule in its 

unstable conformation has a multiplet structure with states 
3
A2, 

1
B1, 

1
A1, and 

1
B2 

for ECs and 
3
Au, 

1
Au, 

1
Ag, and 

1
A'g for OCs. We shall see later that when 

electronic interaction is accounted for the lowest states become 
3
A2, 

1
B1, resp. 

3
Au, 

1
Au. The states 

1
A1, 

1
B2, resp. 

1
Ag, 

1
A'g correspond to electron transfer 

between the perpendicular x- and y-subsystems of π-AOs. The molecule in its 

stable conformation, which is 
1
Ag for ECs and 

1
A1 for OCs has a closed shell. 

The degeneration of the frontier π-MOs is removed for inorganic cumulenes 

with alternating atoms of different electronegativity. To a smaller degree the 

same is true if the difference in the hybridization between the parameters of 

inner and outer C atoms is taken into account. But even in this case the lowest 

singlet state may be 
1
Au if the orbital energy splitting does not exceed the 

splitting of even and odd states.  
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 In the following we shall neglect the difference in hybridization between 

outer and inner C atoms. This approximation is sufficiently good because the 

integrals for sp
2
 and sp states are almost equal [149]. 

 Let us the x- and y-MOs in the conformation D2h write down as a linear 

combination of  the  π-AOs xν and yν with the chain of AOs yν denoted by 

primed symbols   

 ,i i i iC x C y   

 

       

The summation is extended over all AOs of the chain. In the same manner it is 

possible to set up the components of the degenerate pairs of the MOs in the 

conformation D2d. 

 Let ˆ
iA  be the creation operator for an electron i of orbital state i  and spin 

state  , and ˆ
i

A  be the same for spin state  . Degenerate orbital pairs of open 

shell will be denoted by the symbols k and k , and orbitals of closed shell by j  

and j . Then the wave functions of states with closed shell c  may be written as  

  

1 1

1( , ) ,

ˆ ˆ ˆ ˆ 0

c c

g

c

j jj j

j j

A A

A A A A   





  

  
,     

where 0  is the vacuum state.  

 Wave functions of states with open shell o will be written as follows:   

 

3 3

2

1 1

1

1 1

2

1 1

1

1 ˆ ˆ ˆ ˆ( , ) ( ) ,
2

1 ˆ ˆ ˆ ˆ( , ) ( ) ,
2

1 ˆ ˆ ˆ ˆ( , ) ( ) ,
2

1 ˆ ˆ ˆ ˆ( , ) ( ) .
2

o c

u k kk k

o c

u k kk k

o c

g k kk k

o c

g k kk k

A A A A A A

B A A A A A

B A A A A A

A A A A A A

   



   



   



   



   

   

   

   

  

For these states the z-component of the total spin 0SM  . Two other components 

of the triplet state 3

2A  or 3

uA  with 1SM    are described by the functions 

  ˆ ˆ c

k kA A 

   and ˆ ˆ c

k k
A A 


 .   

 Let us introduce the standard notations:   
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1 2

12

1 2

12

,

1
,

1
.

core

k k k

ij i ij j

ij j ii j

H H d

J d d
r

K d d
r

  

    

    



 

 













  

 Then the energy of states with closed shell will be:   

 
1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 1

1
( , ) 2 2 (2 ) (4 2 ) (2 )

c core

g j j j j j j j j j j j j j j

j j j j j j j j

E A A H H J K J K J K E      

   

             , 

where coreE  is the core total energy. If we denote  

 
1 (2 2 ) (2 2 )c

k k jk jk jk jk j k j k j k j k

j j

E E H H J K J K J K J K        



            , 

where cE  means an expression which has the same structure as 1 1

1( , )c

gE A A  

above, the sums being taken over the closed shell only, the energy of the states 

with open shell are:   

 

3 3

2 1

1 1

1 1

1 1

2 1

1 1

1 1

( , ) ,

( , ) ,

1
( , ) ( ) ,

2

1
( , ) ( ) .

2

o

u kk kk

o

u kk kk

o

g kk k k kk

o

g kk k k kk

E A A E J K

E B A E J K

E B A E J J K

E A A E J J K

 

 

  

  

  

  

   

    

  

Usually 

  
1

( )
2

ij ii jjJ J J   

holds. This means that among the lower singlet states the lowest are 1

1B  and 1

uA . 

 Reducing the MOs to AOs the integrals over the AOs   

 1 2

12

1
(1) (2) (1) (2)x x x x d d

r
           

will have to be calculated. Zero differential overlap 

                      

will be used in this context. 

 Core integrals H   with    will be accounted for only in case of 

neighbouring atoms and renamed ( 0)    . Integrals between AOs x  and 

y H   are zero for symmetry reasons. Integrals H   will be calculated in the 

Goeppert-Mayer and Sklar approximation [150], neglecting penetration integrals   
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,

.

H I

H I

    

 

       

 

  

  





    



    

    

 

 
  

Here I   is ionization potential of π-electron in the corresponding valence state 

and in the outer field of neighbouring neutral atoms. It is obvious that I I   as 

well as       . The summation runs over all AOs x  resp. y .    

 Let us introduce the following notations for density matrix elements in AO 

representation:   

 , , 2 ,c o T c o

j j k k

j

P C C P C C P P P              

and analogous expressions for the primed densities. For the states with closed 

shell oP  is equal to zero. 

 Using these notations and under the assumption of the approximations 

mentioned above we obtain   

 

,

,

.

c o

jk

j

c o

jk

j

o o

kk

J P P

K P P

J P P

  



  



    

 





   









 

 



  

 In the zero differential overlap approximation all exchange integrals of the 

type ijK   are zero. When the necessary substitutions are done we get the 

following expressions for the energy of states with closed shell:   

 

1 1

1

2

2

( , ) ( ) ( )

1 1
( )

2 4

1 1
( )

2 4

( )

c T T

g

T T T T T

T T T T T

T T T T

E A A I P I P

P P P P P

P P P P P

P P P P

       

 

      



             

 

      



 

 

 



    



             

 

    



   

  
       

  
       

  

 





 

 . (201) 

 Further simplifications will follow if we take into account that for alternant 

hydrocarbons it holds that 1T TP P     [151]. This is also true for the SCF 

method in the PPP approximation, which is assumed, if the ionization potentials 

and integrals are put equal for all C atoms [148, 152] including the end-atoms: 

  ,I I I            .    
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This assumption seems to be not far from the truth for organic cumulenes. 

 If the alternant properties of cumulenes are taken into account then the 

energy of the states with closed shell can be divided up as follows: 

  1 1

1 int( , )c c c core

g x yE A A E E E E    ,   

where  

  
2

1 1
( ) ,

2 2

c T T

xE I P P      

 

   
  

      
   

   (202a) 

  
2

1 1
( ) ,

2 2

c T T

yE I P P            

  

               

  

  
      

   
   (202b) 

  
int .E 



 



   

 The energy c

xE  represents the π-electron energy of a hypothetical 

compound with the same space structure as the corresponding cumulene with 

closed shell but having only one system of AOs of the type x . The same is true 

for the energy c

yE . intE  represents the energy of the static electron interaction of 

the two chains and does not depend upon the MO coefficients. 

 Analogous transformations for the states with open shell 1

1B  and 1

uA  lead to 

the following result: 

  1 1

1 int( , )o o o core

u x yE B A E E E E    ,   

where  

  
2 2

1 1 1
( ) ,

2 2 2

o T T o

xE I P P P        

 

    
    

         
     

   (203a) 

  
2 2

1 1 1
( ) .

2 2 2

o T T o

yE I P P P                

  

                    

  

    
         

     
   (203b) 

 As we see, division into two chains is possible also in this case, but now 

each chain is in a doublet state and has an open shell structure as in organic free 

radicals.  
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 However, for the open shell states 1

1A , 1

2B , 1

gA , and 1

gA  division of the π-

electron system in two subsystems is not possible despite of the fact that rule 
T TP P     is satisfied. 

 The energy intE  is not the same for different cumulene conformations. A 

simple consideration yields 

  int 2 int 2( ) ( )d hE D E D     ,   

where   and   are the indices of the end-atoms.  

 Let us note one incorrectness of the Goeppert-Mayer and Sklar 

approximation [150] when one calculates the interaction energy of positive core 

charges DE . In fact, if we try to find DE  in this approximation by the method of 

Dewar and Gleicher [153] 

  
DE 

 




 ,  

where the summation is taken over all AOs of the two chains, one gets different 

interaction energies for different conformations: 

  2 2( ) ( )D d D hE D E D      .    

However on physical grounds the interaction energies of positive charges in 

different core conformations of cumulenes can not be different. These 

differences are small, of course, and decrease rapidly with increasing chain 

length.  

 If one accepts the differences mentioned then the barrier height V may be 

found from the relation   

 2 2 2 2( ) ( ) ( ) ( )x d y d x h y hV E D E D E D E D      . (204) 

The last term will then result from compensations of charges of intE  and coreE .  

 If, on the other hand, one takes the same core energies coreE  for both 

conformations then 

  2 2 2 2( ) ( ) ( ) ( )x d y d x h y hV E D E D E D E D       . (205) 

Barrier values by (204) and (205) are almost identical especially for large N.  

 As we see from (204) and (205) the barrier height is determined first of all 

by SCF energies of the π-electron subsystems which may be calculated from 
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formulae (202a,b) and (203a,b) [9]. It is also of interest to consider the case of 

Huckel orbitals for a chain with all bond lengths equal. These orbitals are 

expressed analytically as   

 
2

sin
1 1

j

j
C

m m


 


 
.  

Let us take into account the integrals   and   only for neighbouring atoms 

and use the following relations:   

 
1

, 1

1

cosec 1, even
2 2

ctg 1, odd
2 2

m
T

m

m
m

P Q

m
m

 














 

  
 
 

   

           
21

2

, 1

1

/ ( 1), even
( )

( 1) / , odd1

m
T m

m m mQ
P

m m mm
 










  

 
    

 2

1

2
( ) , odd

1

m
oP m

m







     

 
1

2

, 1

1

( ) 0
m

oP 









 .  

It is possible then to show analytically that barriers calculated by formula (204) 

tend asymptotically to zero with increasing N in accord with Huckel calculations 

in [145]. 

 Now we are ready to consider very long cumulene chains using 

sophisticated EHF as well as UHF approaches. 
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Chapter 6. Electronic Structure of Long Cumulene Chains in the Extended 

Hartree – Fock Method Compared with its Unrestricted Version 

  6.1 Introduction  

 It is important to note once more that most properties of carbon polymeric 

chains like polyenes, cumulenes, polyacetylenes, polyacenes, and graphene can 

be explained in terms of the π-electron approximation. This fact enables 

methods involving electron correlation to be used for theoretical treatment of 

such electronic systems, which in turn gives a possibility for studying the main 

features of electron correlation methods for calculations of molecular electronic 

structure. It is well known [6, 16, 17, 107 – 111] that electron interaction may 

give rise to qualitative changes in spectra of systems we are concerned. Thus, if 

electron correlation are taken into account by the UHF method, then energy 

spectra of long polyenes with equal bond lengths [6, 16, 109. 110] and long 

regular cumulenes [17, 111] contain a forbidden zone, the width of which is in 

good agreement with experimental data. If the Huckel or the RHF methods are 

used, i.e., when electron correlations are neglected, the molecular systems we 

consider have spectra of the metallic type unless the further assumptions about 

the bond length alternation have been made [129]. 

 We begin our consideration of long cumulenes with the UHF equations for 

long polyene chains. 

6.2 The UHF equations for long polyene chains 

 Here will be now proved that the UHF equations for long neutral polyenes 

both with even and odd number of carbon atoms are the same. For this purpose 

let us analyze the results obtained for polyenes with even [16] and odd (§ 4 

above) number of C atoms 1N  by the UHF method. If the chain boundaries 

are taken into account, as in the Hubbard’s approximation, the Hamiltonian for a 

long polyene with equal bond lengths can be expressed as [16, 107, 108]   
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 , ,

, , , ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ( 2 cos ) ( , , , )
2

k k k k k k

k k k k k

H k A A A A A A f k k k k
N

     

 


    

   

  

      ,(206) 

where   and   are the Coulomb and the resonance integrals respectively,   is 

the Coulomb integral corresponding to the electron interaction with one of the 

nearest atoms, ˆ
kA 

  and ˆ
kA 

 are the operators of π-electron creation and 

annihilation in the state   

 (0)

1

2
( ) ( )sin

N

k r r k
N





  


  ,  

involving σ-spin, ,   , ( )r  is the νth AO,  

  
1

4
( , , , ) sin sin sin sin

N

f k k k k k k k k
N 

   


             

is a linear combination of the Kroneker δ-symbols of the type   

 ( 2 ). 0,1,2,...k k k k n n          

 It is easy to show that functions (0)

k  are the HF solutions for the 

Hamiltonian (206). In the HF approximation only averages over the ground state 

of the type ˆ ˆ
k kA A 

  do not vanish. In case of the UHF method we have also to 

take as non-zero the averages of the type ˆ ˆ
k k

A A 

 , where k k  . The case 

when the chain boundaries are neglected, i.e. the cyclic boundary conditions are 

used, see in [16, 107, 108]. Hence it follows that 

  (0)

1

1
, , sign( ).

N
ik

k e k k k k
N







    


         

 The UHF Hamiltonian for a long polyene chain can be written as   

 ( ) ˆ ˆ ˆ ˆˆ (2 cos )UHF

k k k k
k

H A A k A A C     


   





     , (207)   
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where     

 2 1, ( )
,

2 4 1. ( )

N
C 


  



  
      

   
  

 The self-consistent value of   

 ˆ ˆ
k k

k

A A
N


 

     (208) 

is defined by the equation   

 
/2

2 2 2 2 1/2

0

(4 cos ) 1dk k




 


   . (209)  

 Let us transform the operators ˆ
kA 

  and ˆ
kA 

 using Eqs (120) above as 

  
(1) (2) 1/2

(2) (1) 1/2

ˆ ˆ ˆ( ) ,

ˆ ˆ ˆ( ) ,

k k k k k

k k k kk

A A A

A A A

   

  

 

 





  

  
  (210) 

where 

 20 / 2, 1 ,k kk           

 2 2 2(2 cos 4 cos ( ) ) / ( )k k k         . (211) 

 Substituting (210) and (211) into (207) one obtains 

  ( ) ( ) ( ) ( )

,

ˆ ˆˆ UHF i i i

k k k

i k

H A A    , (212) 

where  

  (1) (2) 2 2 2 24 cosk k k         . (213) 

 The operators ( )ˆ i

kA 
 correspond to one-electron wave functions 

  ( ) ( )

1

( ) ( ) ( )
N

i i

k kr C r  



  


 , 
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where  

  

(1) 1 1/2

(2) 1 1/2

2
( ) [1 ( 1) ] sin ,

2
( ) [( 1) ] sin .

k k k

k k k

C k
N

C k
N



 



 

   

   

 

 

   

   

 (214) 

 In the ground state all levels (1)

k  are filled and all levels (2 )

k  are empty 

whether N is even or odd. Thus, the relations (208) – (214) are valid in both 

cases. Consequently, in the UHF method the self-consistent functions (214) and 

the energy spectra of long polyene chains with even N coincide with those for 

odd N, as it should be expected so far as 1N . By contrast, the HF solution for 

long polyene is unstable relative to a small perturbation modeling the addition of 

an unpaired electron to the system. 

 Unfortunately, the UHF wave function is not an eigenfunction of the total 

spin operator 2Ŝ . To get rid of this disadvantage one has to use the EHF method. 

It will be shown below that both the UHF and the EHF methods being applied to 

large enough systems give identical results except spin density expressions. This 

means that the projection of the UHF wave function on the state involving the 

lowest multiplicity does not affect the relations (208) – (214). It should also be 

noted that the exact solution of the Schrodinger equation with the Hamiltonian 

(206) and the cyclic boundary conditions is obtained in [112]. The study of the 

exact solution [112, 154] has shown that there was an energy gap in the 

spectrum of quasi-ionic excitations active in optical spectra. Hence, it can be 

concluded that the UHF/EHF method treats correctly this feature of the exact 

solution. 

 Now we shall consider the values   

 (1) 2

/2

[ ( )]k

k

n C 






  . (215a) 

 Substituting (214) into (215a) one obtains 
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  11
( 1)

2
n 

      ,  (215b) 

where  

  
/2

(2) 1 2

0

2
( ) sinkdk k






  




  . (216) 

The chain boundary effect is revealed in the dependence of   on  .  It  follows 

from (216) that  

1 2 30.28, 0.18, 0.23,..., 0.21 for 1 ( 2.4 , 5.4 [16])eV eV               . 

Thus, the chain boundary effect extends, in fact, to only the first two – three 

atoms. It also follow s from (215) that 1n n 



  . The values n  are equal to 

electron populations of the th  AO with σ-spin in the UHF method, but it is not 

the case when the EHF method is used as shown below. In the latter case the 

values (215) can be treated as self-consistent parameters. 

6.3. Electronic Structure of Long Cumulene Chains 

 Now we shall turn to the treatment  of long cumulenes 4C H ( 1)N N  using 

the results obtained just above. As we know the π-electron system of a cumulene 

molecule consists of the two π-subsystems which have the maxima of the 

electron density at two mutually perpendicular planes. From now all values 

corresponding to one of these subsystems will be marked with letter a/A and to 

another – with letter b/B. There are two possible conformations of a cumulene 

molecule which differ by mutual orientation of its end-groups CH2. Let us 

denote the conformation of symmetry D2h in which the end-groups lie in the 

same plane as A  and the alternative conformation of symmetry D2d – as A .  

 Let us consider a cumulene molecule neglecting its end-groups. In the 

short-range interaction approximation [17, 111] one can obtain the following 

expression for the Hamiltonian of a long chain =(С=)N 
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 

 

 

, , , ,

, , , ,

ˆ ˆˆ ˆ ˆ( 2 cos )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
2

ˆ ˆ ˆ ˆˆ ˆ2

k k k k

k

k k k k k k k k

k k k k k k k k

k k k k k k

H k A A B B

A A A A B B B B

A B A B B A B A
N

B B A A A A

   



       

       

    

 





 

 

   

        

   

        

  

     

  



  

 



 
, , , ,

ˆ
k k k k

k kB B


  



  



   



 
 
 
 
 
 
 





,  (217) 

where ˆ
kA 

  and ˆ
kB 

  are the operators of electron creation in the states (0)

,k a  and 

(0)

,k b  with σ-spin,  

  (0) ( )

,

1

2
( ) ( )sin

N
j

k j r r k
N





  


  ,  

  2 ( ) 2 1 ( ) 2

12 1 12 2| ( ) | | ( ) |a be dV r r r     , (218a) 

  2 ( ) ( ) 1 ( ) ( )

12 1 1 12 2 2( ) ( ) ( ) ( )a b a be dV r r r r r         . (218b) 

 Taking into account that the orbitals of different subsystems do not mix and 

assuming that the values ˆ ˆ
k kA A 

 , ˆ ˆ
k kB B 

 , ˆ ˆ
k k

A A 

  and ˆ ˆ
k k

B B 

  being 

averaging over the ground state do not vanish, we obtain the effective UHF 

Hamiltonian for a long cumulene molecule   

 

( )

, 1

( )

, 1

ˆ ˆ ˆ ˆˆ [2 cos ( ) ] ,

ˆ ˆ ˆ ˆ ˆ[2 cos ( ) ] ,

UHF

a k k a b k k
k

UHF

b k k b a k k
k

H A A k A A C

H B B k B B C

      

      

    

    

 



 



     

     




 (219) 

where 

  ˆ ˆ ˆ ˆ, ,a k b kk k
k k

A A B B
N N

 
  

          

 2

1 1[2 2( ) ]. 0
4 2

N
C k

 
    


          

 According to [17, 111], there are two possible self-consistent solutions: 

  (1) 1a b     , 

      (2) 2a b     .  
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Since the lowest ground state energy is known to correspond to the first case 

[17, 111], we shall restrict ourselves to the case a b   . Substituting this 

condition into Eq. (219) one obtains 

  

( )

, 1 1

( )

, 1 1

ˆ ˆ ˆ ˆˆ [2 cos ( ) ] ,

ˆ ˆ ˆ ˆ ˆ[2 cos ( ) ] .

UHF

a k k k k
k

UHF

b k k k k
k

H A A k A A C

H B B k B B C

     

     

   

   

 



 



    

    




  (220) 

 The expression (220) have the same form as (203). Because of this the 

expressions (220) are diagonalized  by canonical transformation of the type 

(205), namely: 

  

( ) ( ) ( ) ( )

, 1

,

( ) ( ) ( ) ( )

, 1

,

ˆ ˆˆ ,

ˆ ˆ ˆ ,

UHF i i i

a k k k

i k

UHF i i i

b k k k

i k

H A A C

H B B C

  

  









 

 




  (221a) 

where  

  (1) (2) 2 2 2 2

14 cos ( ) , 0 / 2k k k k              , (221b) 

the self-consistent value of  1  is defined by the equation   

 
/2

(2) 1

0

( ) 1k dk


 





 . (222) 

 The operators ( )ˆ i

kA 
 and ( )ˆ i

kB 
 correspond to the functions ( )

,

i

k a  and ( )

,

i

k b . Their 

coefficients of the expansion in terms of the atomic orbitals ( )a

  and ( )b

  are 

diagonal as to the marking a and b and have the form 

  ( ) ( ) ( )

, ,( ) ( ) ( )i i i

k a k b kC C C      , (223) 

where ( )i

kC   are determined by (214) if k  is substituted by 

  2 2 2 2

1 12 cos 4 cos ( ) / ( )k k k             
 

. (224) 
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 In the ground state all levels (1)

k  of the two subsystems are filled and all 

levels (2 )

k  are empty. Thus, the UHF wave function of the cumulene ground 

state has the following form   

 ( ) (1) (1)

0
ˆ ˆ 0UHF

k k

k

A B 



   . (225) 

 Using (217) and (225) one can obtain the expression for the ground state 

energy 

  
 

( ) ( ) ( )

0 0 0

(1) 2

, /2 1

/2

ˆ

1
4 1 2 2

2 2

UHF UHF UHF

k k

k

E H

N



 
     



  

   
             


. (226) 

 Atomic populations are defined as   

 ( ) ( ) 11
( 1)

2

a bn n 

        , (227) 

where  

  
 

 
/2

22 2 2 1/2 21

1

0

2
[4 cos ] sindk k k





 
    



 
    . (228) 

 The analysis of (228) allows to reveal the dependence of   on   

( 3.6 , 5.4 , 0.5eV eV eV      [17, 111])    

 1 2 3 10.16, 0.07, 0.13,... 0.11. ( 1)           (229)  

 Thus, as with the polyenes, the chain boundary influence on   sharply 

decreases when the distance from the chain boundary increases.  

 We shall need further the equations for the coefficients (223), which can be 

obtained by proper transformation of (221), namely:   
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( ) ( ) ( ) ( )

, , ,

1

( ) ( ) ( ) ( ) ( ) ( )

,1 , , , , , ,

ˆ( ) ( , ) ( )
2

[(1 ) ( 1) (1 ) ( 1)] [ ] ( ).

N
i i UHF i

k k a a k a

i i a b b i

k a N k a k a

C H C

C C n n n C

  



         

 
      

         



 

 
    

 

         


  (230) 

 To obtain the equations for ( )

,

i

k bC 
 it is necessary to permute markings a and 

b in (230).   

 Now let us consider cumulenes taking into account the end-effects. In the 

conformation A  with symmetry D2h  the subsystem a contains N π-electrons and 

the subsystem b  contains  N – 2   π-electrons. In the conformation A  with 

symmetry D2d  both subsystems a and b contain the same N – 1   π-electrons. In 

passing from the long ideal no-end-groups cumulene to a real cumulene 

molecule with the end-groups some alterations in the equation (230) result due 

to the relative shift of the cumulene π-electron subsystems a and b. Namely, the 

effective values of the Coulomb integrals are changed according to   

 
( ) ( ) ( ) ( )

,

( ) ( ) ( ) ( )

,

,

.

a a b b

b b a a

n n n

n n n

    

    

    

    





   

   
  (231) 

It follows from (231) and (229) that the effective Coulomb integrals of the end-

atoms decrease by the value   

 ( ) ( ) ( ) ( ) ( )

1 1 1 1 4.7i i i i i

N n n n eV                 

without regard for a change in the interaction between σ- and π-electrons in 

passing from the long ideal no-end-groups cumulene to real cumulene molecule. 

However, as long as the end carbon atoms of a cumulene molecule have the sp
2
 

hybridization, one should expect that the absence of the Coulomb interaction 

between π-electrons at the end-atoms is compensated by an interaction between 

σ- and π-electrons. This point of view is supported by the fact that the first 

ionization potential of a carbon atom in the valence sp
2
 state coincides with that 

in the sp state within 10
–3

 eV [149]. On the other hand, the exchange interaction 
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  does not appear to be compensated for in this  case. Thus, we shall assume 

that the change  in  the  Coulomb  integrals  (231)  at  the  end-atoms  is  

( ) ( )

1| | | | 0.66 0.3i i

N eV        . Let us consider the alteration of ( )i

  at the atoms 

next to the end-atoms. Using (229) and (231) one can obtain for the longer 

subsystem  

  2 30.04 , 0.02eV eV              ,  

and for the shorter subsystem  

  2 30.04 , 0.02eV eV              .  

 Thus, the end-effects in cumulenes are of a local nature and can be 

considered by means of the local perturbation theory [20], which was applied to 

long polyenes in the framework of the UHF method in § 5 above.  

 The ratio ( ) ( )| / | | |i i

      is a parameter which defines the relative 

magnitude of a local perturbation [20]. It follows from evaluations given above 

that ( )Max| | 0.08i

  , i.e. the perturbation due to the end-effects in cumulenes is 

small enough. It was already shown in paragraph 5 above that small local 

perturbation do not disturb the self-consistency of the UHF Hamiltonian 

(accurate within  ). Therefore, let us consider the electronic structure of 

cumulenes in the conformations A  and A  neglecting the small alterations of 

the parameters ( )i

 . In one of the two conformations, namely A , each π-

subsystem a and b consists of an odd number of electrons, being a long polyene 

radical. Nevertheless, it follows from the previous section of this paragraph that 

the energy spectra of long even polyenes and long polyene radicals  are  the  

same  in  the  framework  of  the  UHF  (or EHF) method. Thus, in both 

conformations of a cumulene, its excited states are separated from the ground 

state with the gap 12( )    in accordance with Eq. (221b). 
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 Let us evaluate the difference between the ground state energy of a long 

cumulene chain in the conformation A  and that in the conformation A : 

E E E   . The value of E  is usually referred to as the torsion barrier of 

cumulene end-groups. Using the relations (217) and (225), one can obtain   

(1) (1) (1) 2 2 2

2 1 1 1 2 1 1[ ] [ ] 2 [ ] ( )[( ) ( ) 2( ) ]k N k N k N N N N

k k k

E N
  

                    , (232) 

where (1)[ ]k N

k

 stands for k  changes from 0 to / 2  spaced / ( 1)N   when 

summing up, 1( )N  is the root of the equation   

 
1/2

/2
2 2 2 2

1

1

4 cos ( ) 1
1

N

i

i
N

  
  







   
       

 . (233) 

 In order to evaluate Eq. (27) it is important to note that if ( )f k  is a 

continuous function of k  then   

 
2

1
2

1 1

a a a
f f f

N N N N

       
          

        
. (234) 

It follows from Eqs (234), (221b), and (233) that (1/ )E N   , i.e., the torsion 

barrier tends to zero when the cumulene is lengthened. From the mathematical 

point of view this result is due to the fact that the intervals between the levels 

occupied in the ground state are of 1/ N  whether the cumulene subsystems a 

and b consist of the even or odd number of π-electrons. 

 Let us evaluate the influence of the small perturbations ( )i

  on the π-

electronic structure of cumulenes. As we already know from paragraph 5 above, 

small local perturbations can give rise to local states in the forbidden zone of a 

system like long polyene chains. These local state energies differ from the 

nearest zone state energy by values 2a , where a  is  the  width  of  the  

forbidden  
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zone in the ideal cumulene chain. It means that in our case the forbidden zone 

width 12( )    is not affected practically by the end-effects. It was also shown 

in § 5 above that local perturbations placed at the large distance from one 

another do not interact. Hence it follows that the end-effects  in long cumulenes 

can not change the value of the torsion barrier. Indeed, the contributions into the 

ground state energy are additive relative to perturbations of atoms placed at the 

different ends of a long cumulene chain and, because of this, are the same 

whether the cumulene is in the conformation A  or A .  

 To study spin properties of cumulenes we should pass from the UHF 

method to the EHF approach. As it will be shown below, the SCF equations for 

systems consisting of the large number of electrons are the same whether one 

uses the UHF or the EHF method. So, the orbitals ( )

,

i

k a  and ( )

,

i

k b  corresponding 

to the operators ( )ˆ i

kA 
 and ( )ˆ i

kB 
 are also self-consistent ones in the EHF method. To 

put it another way, the Eqs (230) remain valid in spite of the fact that the values 

( )in  given by (227) are not equal to the AO electron populations with σ-spin 

when the EHF method is used.  

 Let us now consider the multiplicity of the cumulene grounf state. Suppose 

the number of cumulene carbon atom to be even, i.e. 2N q . Then both 

cumulene subsystems a and b in the conformation A  consist of the even number 

of π-electrons N and N – 2, respectively. Hence, the total spin projection for 

each of the two subsystems in the ground state when all levels of both 

subsystems are filled is equal to zero: 0a bM M  . Therefore, the cumulene 

ground state in the conformation A  is a singlet one (S = M = 0) and its EHF 

wave function, as will be shown below,  has the following form   

 ( )

0
ˆ ÂEHF

A S M A AO     , (235) 

where Â  is the antisymmetrization operator be specified later,  
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  (1) (1) (1) (1)

, , , ,
1 1 1 1

( ) ( ) ( ) ( )
a b a bn n m m

A a ai a i b i a i b
i i i i

i i n i n i n m    
   

   

        , (236)  

  

( ) ( )

, , , / ( 1),

(1) (2) ( ) ( 1) ( 2) ( ),

, , / 2, 1.
2

i

l l

i j k i

A

a b a b a a b b

k i N

n n n n m

N
m m m n n n n m N n m

   

      

  

        

        

 (237) 

 Let us now discuss the conformation A . Each of the cumulene subsystems 

a and b consists of the odd N – 1 number of π-electrons and, consequently, 

possesses the total spin projection | | | | 1 / 2a bM M  . To determine the total spin 

projection of the cumulene a bM M M   we shall consider the Eqs (219) taking 

into account the equivalence of the equations of the UHF and EHF methods for 

large systems. ―Unpaired‖ electrons in the cumulene subsystems a and b occupy 

the levels involving / 2k   and energies 1( )     in both subsystems 

according to (219). It follows from the relation a b    and (219) that one-

electron functions of these levels should have the same spin parts in the two 

different subsystems. Hence, a bM M  and the ground state of cumulene in the 

conformation A  is a triplet. Its EHF wave function can be written as  

  ( )

1
ˆ ÂEHF

A S M A AO  
     , 

where A 
 and A 

 are defined by Eqs (236) and (237) if the following relations 

are taken into account, namely: 

  1 1 / 2.a b a bn n m m N         

 Let us pass now to the calculation of the AO spin populations in long 

cumulene chains. Using the Eqs (223) and (224) according to the UHF method 

one can obtain in the two conformations of cumulenes   

/2

( ) 1 2 1 2 2 11
1

0

2( )
( ) ( 1) [ ] [sin sin ( 1)] ( 1) 2( )UHF

z kdk k k



 

 

 
      



  



 
       . (238) 
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To obtain spin populations in the framework of the EHF method one should 

multiply (238) by the factor / ( 1)S S   in accordance to the relation (252) below. 

So, the AO spin populations in long cumulene chains CNH4 with an even number 

N vanish identically in the conformation A . But, they differ from zero in the 

conformation A  and are equal to 

  ( ) ( ) 1 1

1

1
( ) ( ) ( 1) ( ) 0.22 ( 1) . ( 1)

2

EHF UHF

z z

 

        

        

6.4 EHF and UHF Methods when Applied to Large Electronic Systems 

 Before to give the final discussion for this paragraph let us compare the 

UHF and EHF approaches as applied to large systems. The EHF wave function 

can be written as (see § 3 above) 

  ( ) ( )

0 , 0 , 0 0
ˆ ˆ ÂEHF UHF

S M S MO O      , (239) 

where  

  
0 1 2 1 2

0

(1) (2) ( ) ( 1) ( 2) ( ),

(1) (2) ( ) ( 1) ( 2) ( ).

n m
n n n N

n n n n m

      

      

     
    

      
. (240) 

,
ˆ

S MO  is the operator of the projection on the state with the multiplicity 2S + 1,  

ˆ ˆ( ) / 2, AM n m 



     is the antisymmetrization operator. In the EHF method 

the ground state energy of a many electron system has the form   

 

 

1 12 12

1 1 1 2

( ) ( ) ( ) ( ) ( ) 1

0 0 0 0 0

1ˆ ˆ ˆ01( ) 21( , ) , , , ,
2

1 1ˆ ˆ, 11( ) , 11( ) 12( , ) ( , ) 22( , ) ( , )
2 2

ˆ / 00

i ij

i i ij

EHF EHF EHF EHF EHF

i h i T i T i j i j g i j i j g j i

i h i T i i h i T i T i j S i j T i j S i j

E H T

   

 

         

   

 



  

     

     



  
   


   

  

,


 


 
  

(241) 

where we have used the standard notations for the electron interaction integrals, 

1( , )S i j  and 2 ( , )S i j  are the sums of some electron interaction integrals,   

 [ (1 ) ]i j i i iji j          
    , (242) 
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if S M , then    

 

1

0

m J

p

p

n
TIJ A

p I






 
  

 
 , (243a)   

 0( ) |
ixTIJ i TIJ  , (243b) 

  
0( , ) |

i jx xTIJ i j TIJ   , (243c) 

  
1 2

1 2

2

( , ,..., )

( )

, ( )
p

p

i j

p k k k k k

k k k

k k

A x x x x 



    , (244) 

n

k

 
 
 

 is the binomial coefficient. If the relations    

 

0 0 ( ) 0 ( , )
1,

00 00 00

( ) ( , )
0

00 00 00

T J T J i T J i j

T T T

TIJ TIJ i TIJ i j

T T T

  

  

  (245) 

are valid with , 1,2I J   then the expression (241) coincides with 

( ) ( )

0 0
ˆUHF UHFH  , i.e. ( ) ( )

0 0

UHF EHFE E . It is shown [69, 70, 155] that the relations 

(245) are valid for the limit case n m   in the one-parameter AMO method 

( , 0 1)ix x x   . In that case one may write   

 

2

2

0 00 1 / (1 ),

1
1 ( 00),

1
2 ( 00),

( 1)

T J T x

d
T J T

m dx

d
T J T

m m dx

  






, (246) 

where |
ix xTIJ TIJ  . Let us evaluate the values of TIJ  for the many-parameter 

AMO method and, therefore, for the EHF method. To do this let us reduce the 

expression (244) to the form   

 p

p p

m
A t

p

 
  
 

, (247a) 
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where   

 
1 2

1 2

1/

1

( , ,..., )

( )

p

p

i j

p

p k k k

k k k

k k

m
t x x x

p





 
  

    
  
 

 , (247b) 

 Since, according to (242) 0 1ix  , then [156]   

 1 2 mt t t      . (248) 

 Taking into account that all terms in (243) are positive and using (247) and 

(248) one can obtain 

  
1

| |
mx t x tTIJ TIJ TIJ   . (249) 

 It follows from (246), (249), and (243) that the relations (245) are also 

valid in the framework of the multi-parameter AMO method for the limit case 

n m  . Thus, the relation    

 ( ) ( )

0 0

EHF UHFE E   (250) 

is valid in general if the system under consideration consists of a large number 

of electrons. Besides, it follows from equation (250) that the SCF equations are 

the same in the EHF and UHF methods for this case. This can be proved directly 

through the use of the EHF (or the GF) equations (see § 3 above) obtained by 

Goddard. 

 As far as the EHF approximation, the spin density expression has the 

following form    
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    




 

   

 


  

 








 (251) 

in the analogous spin density expressions [67, 124] there seems to be a mistake 

in the coefficients in the last term in (251). 

 Using (245) one can obtain from (251) for the case ( )N n m       

 ( ) 2 2 ( )

1 1

( ) | ( ) | | ( ) | ( )
1 1

n m
EHF UHF

z zi i
i i

S S
R R R R

S S
   

 
 

 
     

  . (252)  

 For long polyene chain from (242) and (214) one obtains   

 2 2 2 2cos / (cos )k kx k k d   , (253) 

where / 2 | |d    . Using (247b) and (253) let us evaluate the values of 1t  and 

mt  for this case, namely: 

  
/2

2 2 2

1

0

1 2
cos / (cos ) 0.77k

k

t x dk k k d
m




     ,  

  
/2

2 2 2

0

1 2
ln ln ln[cos / (cos )]m k

k

t x dk k k d
m




    , (254) 

hence 

  2 1[1 2 2 (1 )] 0.55mt d d d      . (255) 

 So far 1 0t   and 0mt  , then the relation (250) in case of polyenes 

immediately follows from (255), (246), and (249). So, the orbitals ( )i

k  are self-

consistent ones in the framework of the EHF method as well as in the UHF 
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method. The EHF spin density vanishes identically in long even polyenes (S = 0) 

and differs from zero in long polyene radicals (paragraph 4 above) according to 

Eq. (252).  

 Let us calculate the weight of the lowest multiplicity state with the 

normalized UHF wave function, namely   

 
2 1 2 1 1

00 2
1 1

S M

S S
T

n N x
 

 
 

 
, (256) 

where 1 mt x t  . It is interesting to note that using the Gaussian approximation 

supposed by van Leuven [157, 158] one can obtain 

  1
0

10

(1 ) 2 1
exp sin

4 1
S

m t
d

N t
   





 
     
 . (257)  

 It follows from (257) that the Gaussian approximation gives the same value 

of S  as the approximation used for this purpose in [6]. Comparing (257) with 

the exact expression (256) one can see that the approximation (257) correctly 

reflects the asymptotic behaviour of S  when N   (except for the constant). 

It should be noted that the relation (250) can be obtained also by means of the 

rotation group theory [157]. However, using this method we lose some 

important details, e.g. it is impossible to obtain the asymptotic form (252) for the 

spin density expression (251). 

 Next let us discuss the excited states of long polyene chains by means of 

the EHF method. Let us replace an orbital (1)

k  by (2)

k  in (239) and denote this 

―configuration‖ as ( )

( )

EHF

k . In general the function ( )

( )

EHF

k  is not orthogonal to 

( )

0

EHF :   

 ( ) ( ) 2

0 ( ) 11( ) 1EHF EHF

k k kT k        .  (258) 

 But, when N   it follows from (245) that    
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( ) ( ) ( ) ( )

( ) 0 ( ) 0

( ) ( ) ( ) ( )

0 0 ( ) ( )

1
| 0

EHF EHF EHF EHF

k k

NEHF EHF EHF EHF

k k
N

 

 



   
  

   
.  (259) 

 So, the wave function ( )

( )

EHF

k  is asymptotically orthogonal to ( )

0

EHF  and 

may be used for a description of the excited state the energy 

  ( ) ( ) ( ) ( ) ( ) (2)

( ) ( ) ( ) ( ) 0
ˆ / 00 2EHF EHF EHF UHF UHF

k k k k kE H T E E          . (260)     

 To summarize, the ground state energy, energies of the lowest excitations 

and the the SCF equations for large systems ( 1N ) are the same in the 

framework of the UHF and the EHF methods. Thus, to calculate the electronic 

structure of the system, which consists of large number of electrons, by the EHF 

method one may use the simple single determinant UHF wave function rather 

than the much more complicated EHF wave function (239).  

 

6.5 Some Conclusions 

 As already known the appearance of the forbidden gap of about 1 eV width 

in the optical spectra of long cumulene chains can be explained by means of the 

RHF method with the alternation of bond lengths being introduced. However, 

the torsion barrier of the end groups of long cumulene chain does not vanish in 

this model. This fact seems unnatural as far as the end-groups CH2 of long 

cumulene chain CNH4 ( 1N ) are placed at the large distance from one another. 

On the other hand, the simple MO methods give 0( )E N    for cumulenes 

with equal bond length. But in this case the first electronic transition frequency 

also tends to zero which contradicts the experiment.  

 To put it another way, the assumption that the energy gap in the spectra of 

long cumulene chains is due to the bond alternation gives rise to the dependence 

of the gap value to the torsion barrier. The gap value is shown to be equal to the 

torsion barrier in this model [159]. From the mathematical point of view this 
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correlation between the gap value and the torsion barrier results from neglecting 

electron correlation. Indeed, if the long cumulene chain in the conformation 

2( )dA D  involving the odd number of π-electrons in each of the two subsystems 

a and b is treated by means of the Huckel or the RHF methods, then in the 

spectrum of such chain there are two levels in the ground state which correspond 

to the zero values of one-electron energies, whether the bond alternation is 

introduced or not.  

 It is shown in this paragraph that the appearance of the forbidden zone in 

spectra of long cumulene chains is not connected with the value of the torsion 

barrier in the framework of the EHF method in contrast to the simple models 

mentioned above. Furthermore, the EHF method gives zero value of the torsion 

barrier for long cumulenes with equal bond lengths. On the one hand, these 

results once more suggest the necessity for taking account of electron correlation 

when large conjugated systems are treated. On the other hand, we think that 

these results provide some further evidence for the correlation nature of the 

forbidden zone in spectra of long cumulene chains and, consequently, long 

polyene chains.    
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Chapter 7. Coexistence or Contradiction of the Peierls- and Mott-type 

Instabilities in Quasi-One-Dimensional Systems 

 

7.1 Introduction 

 It has been first stated by Mott [160 – 168] that the one-dimensional array 

of atoms with a half-filled valence band should necessarily exhibit metal – 

dielectric transition as a result of increasing the lattice constant. Modern 

developments of the Mott instability have been reviewed in [106, 168, 169]. In 

such Mott-type dielectrics the lowest quasi-ionic excitations are separated from 

the ground state  by the energy gap of the order I A   (I and A are being the 

ionization potential and electron affinity correspondingly). The value of this 

important parameter should be ~10 eV in the case of isolated small atoms, but 

some factors in real systems like polarizability of the given elementary unit 

(CH2 group in polyenes, TCNQ fragment in charge transfer salts) or of the 

neighbouring elementary units [170] reduce this gap to 3 4eV    for polyenes 

and up to 1eV   in TCNQ chains. Furthermore, electron exchange at the real 

interatomic distances should be taken into account which results in the 

broadening of previously highly degenerate ionic  excited  states  to  a  

conductance  band  of  width 4 | | , where β being the resonance integral. In 

the case of / | | 1 , this does not change the spectrum qualitatively and even 

at real distances one gets the Mott-type dielectric at zero temperature. In the 

opposite case / | | 1 , the exchange broadening is larger than the energy gap 

which leads to the metal type structure of the excitation spectrum of the 3d-

crystal. However, in the 1d-case such a structure is unstable with respect to 

nuclear displacements of a special kind and the Peierls transition to the usual 

semiconducting state takes place [17, 171 – 173]. As a result one gets an initially 

continuous band of allowed states split in two bands with a forbidden zone of 
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the width 1 2| |  , where 1  and 2  are exchange integrals of the neighbouring 

bonds; no magnetic structure has to be expected.  

 As it has  been  pointed  out  in [174],  a  close  relationship  exists  

between  the  so-called  metal – insulator transition and the various instabilities 

of the conventional Hartree – Fock state which is associated with formation of 

the charge or spin density waves [175 – 186].  

 The following question naturally arises: what will happen if | |  and   are 

of the same order of magnitude? Concerning some similar problems [187, 188] 

it has been supposed that the gap in the energy spectrum would arise from 

combined effects of two factors. Nevertheless, the opposite points of view have 

also been introduced [134, 189]. Let us mention here that the situation seems to 

be different for 1d- and 3d-systems; in the last case there is a strong evidence, 

both experimental and theoretical, in favour of coexistence of Peierls and Mott 

instabilities [169]. In this paragraph the 1d-problem will be treated with 

generalization to consider finite temperatures. 

 It should be mentioned that for both types of instabilities the gap should be 

temperature dependent and should be equal to zero  if the temperature raises 

above some critical temperature Tc. This may be qualitatively understood as 

follows. In the case of the Peierls transition, the width of the gap is determined  

by two subtle effects: lowering of the total energy due to the lowering of filled 

energy levels and raising the energy due to lattice distortion. The energy 

minimum is reached at the definite distortion which determines the energy gap 

value. If the temperature is raised, some of the electrons pass to the band of 

excited states which results in  two  effects  of  the  same  sign: 1) the energy 

gain due to the energy levels lowering becomes smaller because not all those 

levels are now filled; 2) from the point of view of the excited electrons, 

decreasing the gap is preferable as it lowers their energy. Thus, the gap width   
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and the lattice distortion depend on the occupation n of the one-electron states, 

which in its turn depends on the temperature:  ( )n T   .    

 Thus, at a higher temperature the gap becomes smaller, which makes it 

easier for the electrons to occupy excited states after the temperature rise and so 

on. It seems likely that the process is fast enough and at some Tc  the gap 

vanishes. The quantitative treatment [172, 173] confirms this explanation.  

 The situation is formally similar in the case of Mott semiconductors. In this 

case the creation of ionic excitation makes it easier for the electron at the 

neighbouring atom to be excited also, i.e., the energy gap depends on the 

electron distribution at the levels of the ground and excited states which, in turn, 

is temperature dependent.  

 The method used below is simple and straightforward: the 1d-chain with 

lattice displacement x  of the kind of bond alternation will be considered using 

the SCF calculations allowing, in principle, to get the correlation gap. The total 

energy or the free energy in the case of 0T   will be evaluated to investigate 

whether its minimum correspond to the nonzero values of both correlation gap 

and the lattice distortion or whether only one of them may differ from zero for 

the 1d-system.   

7.2. Peierls and Mott Instabilities at T = 0
◦
 K 

 We start with a Hamiltonian that differs from the Hubbard Hamiltonian in 

two points: the lattice distortion as the bond alternation is taken into account and 

the repulsion of electrons when accounted for the neighbouring atoms 12  is 

included, namely:   

 

1, 1,

12
1, 1, 1, 1,

ˆ ˆ ˆ ˆ ˆ ˆˆ [ ( 1) ]( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ),
2

n

n n n n n n

n n

n n n n n n n n n n

n n

H A A A A A A

U A A A A A A A A A A

     

 

         



  



  

 

    

      



     

  

 

 
 (261)  
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where   is the Coulomb integral, U is the Hubbard parameter of the electron 

repulsion on the same atom, 12  accounts for electron repulsion on the nearest-

neighbouring atoms. The second term describes the Peierls doubling of the unit 

cell. The first term will be omitted in the following treatment bearing in mind 

that it results only in a trivial equal shift of all energy levels.  

 The translational invariance of the Hamilton (261) may be used to reduce it 

to a more nearly diagonal form. Let us introduce the operators ˆ
kB 

  and ˆ
kB 

which 

 create and annihilate, respectively, an electron in a state with quasi-momentum 

k and spin σ:   

 

1ˆ ˆ

, , 1, 2,..., .
1ˆ ˆ

ink

n k

k

ink

n k

k

A B e
N n

k n N
N

A B e
N

 

 



   
 

    






  (262) 

 The usual anticommutation relations for the operators ˆ
kB 

 are obeyed   

 ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] 0, [ , ]k k k k k k kkB B B B B B         

            . (263) 

 The inverse relations are 

  

1 ˆˆ ,

1 ˆˆ .

ink

k n

n

ink

k n

n

B A e
N

B A e
N

 

 

 










 (264) 

 Transforming the Hamiltonian (262) to the new operators, one obtains 

  

1 2 3 4

1 3 2 4

,

12
, , 1 2

ˆ ˆ ˆ ˆ ˆ2 cos 2 sin

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ cos( ),

k k k k

k k

k q k k q k k k k k

k k q k k k k

H B B k i B B k

U
B B B B B B B B k k

N N

    

       

 



 



   

   

   

  

  

 

 
  (265)  

 The quadratic part of the Hamiltonian is diagonal only for the regular 

lattice ( 0  ). In the alternating lattice ( 0  ) there are N/2 equivalent pairs 

of sites rather than N equivalent sites. Thus, a linear combination of the 
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operators (264) is required to diagonalize the quadratic part of the Hamiltonian. 

The energy spectrum breaks up into two bands, separated by a forbidden zone 

4   in width. We do not follow this procedure here because it is useless in 

treating the last two quartic interacting terms in (265). 

 To treat the full Hamiltonian , we have to simplify it in an appropriate way. 

We wish to obtain the self-consistent solution of our problem. Thus, we shall 

reolace some terms in the quartic part of the Hamiltonian by their average 

values. Bearing this in mind one can reduce (265) leaving only the terms we 

expect to have as nonzero average values in the ground state we are looking for 

and omitting all the terms with zero ground state average. 

 In the Hubbard term of (265) only two terms should be left: 

(i) the q = 0 term, namely: 

  ˆ ˆ ˆ ˆ
k k k k

k k

U
B B B B

N
   

 

 



 . (266) 

 Assuming that in the ground state the average numbers of electrons with 

spin α and β are equal ( / 2n n N   ), and remembering that   

 ˆ ˆˆ ˆ ˆ
k k n n

k n

B B A A n    

    , 

one may replace (266) by the C number / 4UN ; and 

(ii) the q = π term, namely: 

  , ,
ˆ ˆˆ ˆ ˆ ˆ

k k k k

k k

U
B B B B UN

N
       

 

  



   , (267) 

where  

  ,

1ˆ ˆ ˆ
k k

k

B B
N

   



   , (268) 
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and analogous expression for ˆ
 . 

 To understand the physical meaning of the operator ˆ
 , let us return to the 

site operators ˆ
nA 

 and ˆ
nA 

  following Eq. (264). Then one obtains 

  
1ˆ ˆ ˆ( 1)n

n n

n

A A
N

  

   . (269) 

 Equation (269) evidently shows that ˆ
  is proportional to the overall 

difference in the number of electrons with spin σ at the even and odd atoms of 

the chain and differs from zero only if spin alternation at the neighbouring sites 

of the chain take place. Retaining this term makes it possible to account for the 

correlation contribution to the energy gap or, in other words, to treat the Mott-

type semiconductors, while, as it has been mentioned, the second term in (265) 

allows ua to consider the Peierls instability.  

 In the last term of (265) we preserve the following four terms: 

(i) 1 2k k , namely, 

  
1 1 3 3

1 3

12

, , ,

ˆ ˆ ˆ ˆ
k k k k

k k

B B B B
N

   

 

  





 , (270) 

which is merely a correction to the Hartree-type term discussed above, and in 

the ground state assumbed to be replacable by the C number 12N ; 

(ii) 1 4 2 3,k k k k  , namely, 

  
1 1 2 2

1 2

12
1 2

, , ,

ˆ ˆ ˆ ˆ cos( )k k k k

k k

B B B B k k
N

   

 

  

 

 

  , (271) 

which is the usual exchange term; 

(iii) 1 2k k   , namely, 

  
1 1 3 3

1 3

12
, ,

, , ,

ˆ ˆ ˆ ˆ
k k k k

k k

B B B B
N

     

 

  

  



  , (272) 
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which is a Coulomb-type term connecting the states with impulses k  and k   

(these states are already connected in the second term in Eqs (265) and (267), 

thus we continue to keep the terms of this kind); and finally 

(iv) 1 4k k   , namely, 

  
1 1 2 2

1 3

12
, , , , 1 2

, , ,

ˆ ˆ ˆ ˆ cos( )k k k k

k k

B B B B k k
N

     

 

  

  



  , (273) 

which  is  an  exchange-type  term,  connecting  the  k   and  k    states.  

Writing  1 2cos( )k k   as  

1 2 1 2sin sin cos cosk k k k , and reffering to subsequent integration, one can reach 

further simplification of the Hamiltonian due to the fact that the ground-state 

everage of some terms appearing vanish, thus,    

 ,
ˆ ˆ ˆ ˆ ˆ ˆ, sin 0, cos 0k k k k k kB B B B k B B k         

     . 

 Introducing two new operators   

 
,

1ˆ ˆ ˆ sin ,

1 ˆ ˆˆ cos ,

k k

k

k k

k

B B k
N

B B k
N

   

  


















 (274) 

one ia able to rewrite the reduced Hamiltonian in the form   

 2 2 212
12

2ˆ ˆˆ ˆ ˆˆ ˆ ˆ2 2 ( )
2

U
H       

   


      


             . (275) 

 This reduced Hamiltonian is formally very similar to the reduced 

Hamiltonian solved in the Bardeen – Cooper – Schrieffer (BCS) theory of 

superconductivity. As has been proved by Bogolyubov [120, 121], its SCF 

solution for a large system ( N  ) asymptotically coinsides with the exact one. 

Thus, what we have to do now is to solve the wave equation with Hamiltonian 
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(275) using the SCF method. It seems to be convenient in our case to write the 

wave equation in the form of equation of motion.  

 Let us use the standard Bogolyubov transformation   

 
,

ˆ ˆ ˆ
k k k k kb U B V B         (276)  

to define the new operators ˆ ˆ,k kb b 

 , satisfying the equation of motion   

 ˆ ˆˆ[ , ]k k kb H b   . (277) 

 If the coefficients ,k kU V   in (276) are found to satisfy Eq. (277), then the 

transformation (277) diaginalize Hamiltonian (275). 

 Requiring the new operators (276) to be of the Fermi-type   

 ˆ ˆ[ , ]k k kkb b   

     , (278) 

one obtains the following relation for ,k kU V  :   

 2 2| | | | 1k kU V   . (279) 

 Substituting Eqs (276) and (275) into (277), and performing the 

calculations required using (278), one obtains the system of two nonlinear 

equations with respect to ,k kU V  . Linearizing these equations, which 

corresponds to the SCF procedure, and using (279), one obtains the solution in 

the form   

 
22 2 2 2 2 1/2(4 cos 4 sin )k k k U          , (280)    

  

2

22 2 2 2 2 1/2

2

22 2 2 2 2 1/2

1 cos
| | ,

2 (4 cos 4 sin )

1 cos
| | ,

2 (4 cos 4 sin )

k

k

k
U

k k U

k
V

k k U











 



 





 
   


   

, (281) 

where    

 12 12
ˆ, ,

2 2
k  

 
                . (282) 

 To make the solution complete, we have to calculate  , ̂ , and  , 

where the everaging is implied over the just found ground state, corresponding 
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to all states k occupied with the minus sign in Eq. (280), i.e. the ground state 

has the form   

 ( )

0

1

ˆ 0
i

N

k

i

b  



 , (283) 

where the operators ( ) ˆ
kb   are defined by Eqs (276) and (281) with the lower sign 

in (281).  

 To perform the required calculations, one should express ˆ
kB   and 

,
ˆ

kB  
in 

terms of the operators ( ) ˆ
kb  and  ( ) ˆ

kb  ; and after substituting them into (274) to 

average  , ˆ
 , and  over the ground state (283). Taking into account that 

only terms like ( ) ˆ
kb and  ( ) ˆ

kb   contribute to the ground state average values, one 

obtains the following system of coupled integral equations with respect to  , 

̂ , and  :   

 

/2

22 2
0

1

/2 2

12

22 2
0

1

/2 2

12

22 2
0

1,
( )

2 cos
1 ,

( )

2 sin
1 ,

( )

U dk

k U

k dk

k U

k dk

k U













 


 

 


 

 






 

 
  
   

 
    
   







, (284)  

where  

  2 2 2 2 2( ) 4( cos sin ).k k k      

 This system of equations may be solved iteratively, but in  the  usually  

assumed  case  of 12 ,U  it breaks into   

 , ,         

and  
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/2

22 2
0

1,
( )

U dk

k U




 


 

  (285) 

where 

  

2 2 2

1 2 1 2

1 2

( ) 2 cos2 ,

1 1
, ,

2 2

k k    

     

  

     
 

the last equation being the gap equation that, in the case of the regular chain 

structure (no bond alternation), transforms to equation for the correlation gap 

[17, 111] 

  
/2

22 2 2
0

1
4 cos

U dk

k U




 


 

 . (286)    

 As has been stated in [187], Eq. (286) has a nonzero solution 0   for 

all values of the parameters, which we will denote as 0 .  

 Let us now return to the general case of Eq. (285), assuming that   

 0( ) xx e     , 

where x denotes displacement from the regular, equal-bond configuration. 

Thus, Eq. (285) may be rewritten as 

  
/2

22 2 2 2
0

1 2 0

1
( ) 4 cos

U dk

k U




   


   

 . (287) 

 Comparing (287) with (286) one easily concludes that if 0  is the solution 

of (286) then the solution of (287) is given by 

  
2 22 2 2

1 2 0
2 ( )U U       , 

so that   
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2

2 2 1 2

0

1

2 U
 

  
     

 
. (288) 

 We are now in a position to turn to the final step of the treatment, namely, 

calculation of the total energy and minimization of it with respect to x . 

 Substituting Eqs (275) and (280) – (283) into the usual expression for the 

total electronic energy in the ground state   

 
0 0

ˆ
elE H  , 

one obtains 

  2

4
el k

k

U
E U    . (289) 

 It is important to recognize that according to (280) and (288)   

 2

1 2( ) /k U     

is independent on x  because the only term containing this dependence cancels 

in the expression for k . Thus, assuming x  to be small, which results in 

1 2 x    , one can rewrite (289) in the form 

          2

0 1( )elE E E x  . (290)  

 Adding the core deformation energy    

 21
( )

2
coreE к x , 

one obtains the total energy of the chain in the form 

  2

0 ( )E E x   . (291) 
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 This expression, when minimized with respect to x , gives us a solution 

0x   only in the case   

 1

1
0

2
E к    , 

which obviously corresponds to a vanishing bond correlation and to the energy 

gap (286) of the pure ―correlation‖ type.  

 In the opposite case of 0  , the total energy does not exibit a minimum 

at all, decreasing formally to    when x  increases. Nevertheless, taking into 

account (288), one can see that for some x  and corresponding 1 2  , value of 

2  becomes negative, which evidently means that our solution fails 

completely. Here we should remember that apart from the solution described by 

Eqs. (284) and (286), which is the non-trivial solution of the UHF SCF 

equations, we always have the trivial solution 0  , corresponding to the usual 

HF SCF procedure. We have used the non-trivial solution in the case of the 

regular chain structure (no alternation) because in this case it corresponds to a 

lower energy than the trivial solution [174]. However, for 0   this non-trivial 

solution does not minimize the total energy, and for some x  in the process of 

its increasing we get 0  ; at this point we should jump to the trivial solution 

because the non-trivial one ceases to exist. Hence, in this case we have an 

alternating-bond chain with a vanishing ( 0  ) contribution of the Mott-type 

correlation to the creation of the energy gap; while the gap due to the bond 

alternation should be calculated in a quite different way [171 – 173]. The results 

is well known: in the absence of the Mott-type contribution, the Peierls-type 

transition to a semiconducting state necessarily takes place, and the gap obtained 

can be approximately calculated as   

 /2

08 к

alt e    .  (292) 
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 Therefore, at least at zero temperature the picture is clear: depending on the 

numerical values of the parameters involved the quasi-one-dimensional chain 

represents either a Mott-type or a Peierls-type semiconductor, but not their 

combination, and the choice should be done by comparison of the total energies 

of both states. Roughly speaking, it may be stated that the real state is the state 

with the larger gap calculated neglecting the possibility of the other state 

available. In fact, in addition to the criterion | |U   mentioned above for the 

Mott metal – dielectric transition, one more criterion should be formulated 

determining the value of the gap arised due to Peierls instability. However, it is 

evident that if we have | |U  , then the correlation gap is large, ca. U, very 

likely larger than the gap due to the lattice distortion, and the situation is 

reversed for | |U  .  

7.3 Finite Temperatures 

 Let us now consider the same question of the possible combined nature of 

the energy gap in the case of a finite temperature. Only the general method of 

calculations and the final results will be presented below. For details of 

calculations see [172].  

 To get the temperature dependence of all the values we are interested in the 

following procedure may be proposed: in all equations used the average over the 

ground state should be replaced by statistical average calculated as   

 
ˆ ˆ/ /ˆ ˆ /H kT H kTA SpAe Spe  . (293) 

 Bearing in mind that the Hamiltonian expressed in terms of the operators 

ˆ ˆ,k kb b  at (276) – (282) is diagonal, standard equation (293) is reduced to 

  ,

,

ˆ ˆ( )k l

k l

A T kl A kl   , (294)  
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where k l is the average number of particles in the state (k,l) with k stands for the 

quasi-impulse and l – for the zone number. During all transformations the Fermi 

character of quasi-particles has been required (see Eq. 278), hence 

  1

, , ,( ) {exp[ / ] 1} ,k l k l k l kT kT         . (295)   

 For the temperature dependent energy gap playing a central role in all the 

treatment using Eqs (278) and (294) one obtains 

  ,

1 ˆ ˆ
kl k k

kl

B B
N

    

   . (296) 

 Substituting Eqs (295) and (276) – (280) into (296) and performing the 

calculations required which are very similar to those leading to  (285)  one  

obtains  the  following  equation  determining  

( )T , namely:   

 
0

th ( ) /2
1

2 ( )

U E k kT
dk

E k




 , (297) 

where   

  2 2 1/2 2 2 2 2

1 2 0( ) [( ) ( )] , ( ) ( ) 4 cosE k U k k k          . (298) 

 Introducing the density of states, one can transform (297) into the form 

  

2 2

2 2 2 2 2

th /2
1

F

U kT
d





   






    

 , (299) 

where  the same assumption 0( ) xx e      and notation 0| |F   have been 

used, but now   

 
22 2

1 2| |       . (300) 
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 Equation (299) may be considered in the same way as it has been done 

concerning Eq. (287). The one-electron energy levels which are now 

temperature dependent are also independent on x  and all the discussion 

following Eq. (291) may be repeated leading to the same conclusions at the 

finite temperature as were arrived at in the case of zero temperatute.  

 Let us now note that if our system is a Mott-type semiconductor with 

1 2( ) 0    and 0  , then Eq. (299) becomes similar to the Peierls gap in the 

chain with bond alternation, namely, both of them are BCS-type gaps in 

superconductors. Unfortunately this does not provide us much information on 

the nature of metal – Mott semiconductor phase transition because low-lying 

triplet and singlet excitations should be taken into account before one treats the 

quasi-ionic states with higher energies; but only these later states may be 

considered using the standard UHF procedure.   
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Chapter 8. Coexistence of Mott and Peierls Instabilities  

in Quasi-One-Dimensional Systems 

8.1 Introduction 

 The quasi-one-dimensional conductors have so far being studied are of 

interest for both theoreticiants and experimentators. This interest, on the one 

hand, is due to advances in synthesis of polyacetylene (PA), polydiacetylene 

(PDA), organic crystalline conductors based on molecular donors and acceptors 

of electrons. On the other hand, 1d-conductors are nontrivial systems. Thus, 1d-

metal is unstable to the transition into semiconducting state. As a result the 1d-

metal with half-filled conduction band becomes the Mott semiconductor or 

Peierls semiconductor. The Peierls transition leads to dimerization of the 

uniform regular 1d lattice (bond alternation) and semiconducting energy gap is 

proportional to the dimerization amplitude. The Mott transition is a result of 

electron correlation and energy gap in the Mott semiconductor vanishes with 

decreasing electron – electron interaction strength. The semiconductor of the 

Mott and Peierls type possesses some interesting properties. For example, the 

Mott semiconductors are characterized by antiferromagnetic structures [190], 

and in the Peierls semiconductors the kink-type excitations are possible [191, 

192].  

 The influence of the Mott and Peierls instabilities on the properties of real 

quasi-one-dimensional systems have already long story. The main problem in 

theoretical studies consists in complications related to correct account of 

electron correlation effects. In ealier papers contradiction of the Mott and Peierls 

transitions was usually stated. Then it was shown that this contradiction is a 

result of one-electron approach in the RHF theory. The conclusion that the Mott 

and Peierls transitions coexist one with another was first made  in [193]. This 

result was obtained due to more correct treatment of pair electron correlations 

using varying localized geminals (VLG) approach [194 – 196]. It was shown 

that electron – electron interaction can enhance the Peierls dimerization [193]. 

This somewhat surprising result initiates several theoretical studies [197 – 202] 

which conformed the conclusion that even account for a small electron – 

electron interaction leads to increase in dimerization. This conclusion has been 

received on the basis of perturbation theory for infinite chains using 

computations [200] and the Feynman diagram technique [201]. Numerical 
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calculations of short polyene chains within the same geminals approach 

conformed this result slightly deformed by boundary conditions [193].  

 Thus, we can state now that the theory predicts coexistence of the Mott and 

Peierls instabilities in real systems. So, the experimental data on 1d-systems 

should not correspond to the simple picture of the Peierls or the Mott 

semiconductors. One must expore the more complicated theoretical model 

including the both phenomena. On this way only one can give correct 

description of real 1d materials. For example, we can now give the correct 

answer to the question what mechanism of the forbidden gap formation is more 

essential – the electron correlation or dimerization. 

 In this paragraph we shall study now the simultaneous effect of the Mott 

and Peierls instabilities on electronic spectra and lattice distortion in real 1d 

conductors such as organic donor – acceptor molecular crystals and conjugated 

polymers of PA type. These studies are based on the VLG approach [193 – 196].  

8.2 The Method of Calculations and Qualitative Evaluations 

 Studying the electronic properties of organic 1d materials the following 

model of uniform chain with the adiabatic Hamiltonian is used:   

2

1, 1, 1 1 1

, 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )
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m m m m m m m m mm m m m
m m m m
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H c c c c c c c c n n x x

   



     

      


         ,(301)  

where ˆ ˆ
m m mn c c  

 , number of sites N  , mx  is the mth site displacement, 

resonance integrals  

  1[ ( ) ] (1 ), , 0m m m mx x     
          , (302) 

  and     are the electron repulsion parameters, K is the lattice elasticity 

constant.  

 Treatment below will be restricted by the most interesting case of half-

filled conduction band with the number of electrons eN N . The Peierls 

deformation in this case reduces to the chain dimerization 

  1 0( 1) , [1 ( 1) ]m m

m m mx x x           . (303) 

 The experimental values of displacements 0x  are small as compared to the 

lattice constant a. For example, in PA 0 0.07x A  and  a = 1.395 A [190, 203], for 

[K
+
-TCNQ] complexes 0 0.18x A  and  a = 3.6 A [204]. For small values of 0x  

the linear dependence   

 0x





   (304) 
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is valid. The increase of displacement 0x a  destroys the relation (304) as well 

as the harmonic adiabatic approach used in (301). Thus, the method used here is 

valid only for small values of 1 . In this region Hamiltonian (301) is the 

Frohlich-type Hamiltonian with linear relative to displacements mx  electron – 

phonon interaction. 

 Thus, when 1  the adiabatic approach is good enough and the problem 

of 1d instabilities is reduced to studying the ground state energy dependence on 

the value of  (304). In other words, we need the ∆-value optimizing the 

expression   

 
21

( ) ( )
2

t el
к

 


    , (305)      

where el  is the electronic contribution into the ground state energy per an 

electron pair, and 

  2( ) / (2 )к K  . (306) 

is the constant of electron – phonon interaction.   

 In order to calculate the electronic contribution into the ground state energy 

mentioned above the VLG approach will be used. The ground state wave 

function has the form   

 0
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G u f f v f f    
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where    
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 
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

  , (310)   

 cos , sin ,u v    (311)   

 2 arctan( tg ), 2 / , ( 0, 1, 2,...)k ka k l Na l        (312) 

  and   are the variational parameters, the Fermi operators ˆ
mf 

 and ˆ
mf   

correspond to the orbitals mf   and 
mf 

 which are partially localized near points  

 (2 )mR m a  . (313) 

 The ground state energy in units of   per electron pair has the form   
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 2 2

0 1
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       , (314)  

where the kinetic energy average   
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the exchange integral   
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 1 1/ , / ,U U       

average of non-diagonal density or bond order 
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 
          

 . (318) 

 Now we consider the Hubbard approach 1 0   in (301). Then, variation of 

the energy (314) with respect to   gives 

  / 2,el g U     (319)  

where 

  2 24 .g t K    (320) 

 The values of , ,t K P  depend on the value of   [193, 200], so   

 
2

24 (1 )
( ) (1 ) (4 ) ,

E
t E x


 

 

  
     

 
 (321) 

where the ( )E x  is the elliptic integral. 

 The explicit form of λ-dependence of K    

 ( ) Const ln .
3

U
K        (322) 

can be obtained in the limit of small  . We can see from (322) that when   and, 

as a result, U are small the energy dependence (320) on   is nonanalytic. Thus, 

we can suppose strong dependence of U on 0  which minimizes the total 

energy. Results of numerical study of U on   will be given below. Now the 

evaluation of asymptotic behaviour in two limiting cases 0U   and U   will 

be given. 

 When 0U   the non-interacting-electron model is valid and the energy is 

defined by the value of (321) and its optimization with respect to   gives    . 

The energy minimum corresponds to   

 0 04exp( / 8 ) |Uк      (323) 
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due to the fact that [193]   
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 When 4U   one can use the simpler approach instead of (312), namely:   

 .k k    (325) 

 Using (325) one obtains [194, 195] 
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 Substituting (321) and (322 ) in (319) and (305) and optimizing   one 

obtains    

 0 2

8 4
1 .

к

U U

 
   

 
 (326) 

 We note that Eqs (321), (322 ), and (319) describe well the dependence of 

the total energy on U for any value of U > 0 [194, 195]. But, the correct 

description of the Peierls instability near the  point U = 0  needs more precise 

relations due to the fact that the Peierls instability results from a logarithmic 

term. The latter just lost when passing from (312) to (325) [193].  

 Now we consider the effect of electron – electron interaction at neighboring 

sites resulting from the terms with 1  in (301). One can conclude from (314) and 

(318) that γ1-term increases the amplitude of dimerization. In the limiting case of 

weak interactions 1 0U U   one obtains   

 
1

1 1
0 1 0 0 2 2
( ) | exp( ) 4exp( ) exp( )
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  
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Thus, we can see an exponential increase of 0  with 1 0U  . 

 In order to define the optimal value of 0  we have to look for the minimum 

of the energy (305) taking into account (319) in the space of 0  and λ variables, 

namely:   

 
2

2 2 1/2( , , ) [4 ( , ) ( , )] ,
2

E U t K U
к

  


       (328)  

where t and K are defined by (315) and (317), respectively. This task is not too 

complicated, but when 1U  some difficulties arise with the increase of the 

chain length  due  to  the  logarithmic ∆-dependence of the electronic energies  

in (319) and (324). As a result we cannot use the standard method of quantum-

chemical optimization of the bond lengths. This method is based on the linear 
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relations between bond length and bond order resulting from the energy 

expansion   

 2
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1
( ) ,
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and, as a result,   

 0 .lP

N K

 
   (329) 

 Some calculations of PA chains based on formula (329) were performed. It 

was found that even for comparatively long chains with N = 70 the difference   

between Nt  and t  is just a few units of 410 . The Peierls contribution into the 

ground state energy 2 ln   when 0.01   is of the same order. 

 Let us consider now the contribution of dimerization and correlation effects 

in optical spectra of such organic materials like PA and PDA. For these 

conjugated polymers one can use the following parameter values: 
22.4 , 4 / , 47 /eV eV A K eV A      [205]. 

 These values are consistent with the parameters available for small 

conjugated molecules [106, 205] and with frequencies of vibrations active in IR 

and Raman spectra of PA [205]. Using these values of parameters one obtains 

from (306) that 0.07к  . It means that we are in the region of strong dependence 

of U on 0 . 

 Now let us calculate the dielectric gap E . According to [196] one can 

write 

  2 2

02[ (1 ) ],g kE t U T U       (330) 

where   

  ikm

k n n m

m

T e f T f  . 

 The gap value (330) consists of two contributions: correlation contribution 

corrE  and dimerization contribution dimE . When U is small one can assume 

  0 dim 02 2 , 4 ,corr gE t E          

where g  is determined by (320) and 0t  – by (321). 

 The dependence of correlation corrE  and dimerization contributions dimE  

on the value of U is shown on fig. 5. 
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 Figure 5. The U-dependence of the energy gap in electronic spectra of the 

Mott – Peierls semiconductors like PA or PDA: ■ – dimE , ○ – corrE ,   – E .  

 It follows from fig. 5 that the dimerization contribution dimE  to the 

forbidden zone E  exceeds the correlation contribution corrE  when 2 3U   . 

This fact is due to the strong dependence (326) of 0  on U. Using data of Fig. 7 

one can now reevaluate the parameters of real organic conductors.  

 We can conclude from experimental data for trans-PA that 

1.9E eV  [205]. Using the estimation of the electron – phonon interaction 

constant 0.07к   above one  obtains  2.5U  ,  thus  

6.2 eV  . It is interesting to note that in this region, according to fig. 4, 

dimcorrE E   . Nearly the same situation occurs in PDA where 2.5E eV  . 

 Now using data of Fig. 5 one can also easily understand why there are 

some differences in evaluation of correlation and dimerization contributions to 

the gap value. Namely, in the region of intermediate values 1 4U   the corrE  

sharply increases, exceeding dimE  after U = 3. Thus, the values of , 0.1U к   are 

strongly dependent on small perturbations such as the boundary conditions or 

chain length. 

 In such organic materials like [K
+
-TCNQ] we have instead 

   0.9 , 0.05, 0.15 ,E eV к t eV      

which gives 6U  . Thus, the correlation contribution into E  is dominant and 

one can use (326) for the evaluation of 0 .   
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 One can conclude as well that the agreement of the calculated values of 0  

or 0x  in (304) can be obtained by different approaches. But it needs different 

values of parameters , , , K     which depend on the model used in calculations 

of short or infinite chains as well as also chains with cyclic boundary conditions. 

Giving preference to either calculation model one must bare in mind different 

experimental data, not only the values of 0 .  
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Conclusions & Perspectives 

 Advances in physics and chemistry of low-dimensional electron systems 

have been magnificent in the last few dacades. Hundreds of quasi-1d and quasi-

2d systems have been synthesized  and studied experimentally and theoretically. 

The unusual properties of these materials attract attention of physicists, 

chemists, and engineers. 

 The most popular representatives of real quasi-1d materials are 

polyacethylenes [106] and conducting donor – acceptor molecular crystals TTF-

TCNQ [206]. One of the promising families of quasi-2d systems are new high 

temperature superconductors (HTSC) based on cooper oxides La2CuO4, 

YBa2Cu3O6+y [207] and organic superconductors based on BEDT-TTF 

molecules [208].  

 Quantum processes in low-dimensional systems are characterized by a 

number of peculiarities. Thus, special and new theoretical approaches have been 

developed to study low-dimensional phenomena. We will be concerned further 

mostly with the 1d-systems. In one-dimensional physics and chemistry there is a 

number of difficulties and some of them are far from being overcome. On the 

one hand, equations of motion for 1d-systems are much simpler. This facilitates 

rigorous solutions of the model problems which are often impeded in case of the 

larger number of dimensions. On the other hand, manifestations of various 

interactions in 1d-systems are rather peculiar. This relates, in particular, to 

electron – electron and electron – phonon interactions. The standard perturbation 

theory is inapplicable for treating both interactions. Thus, electron – phonon 

interaction leads to the field localization of electron excitation in 1d-systems 

which results in soliton excitations and the Peierls deformations. Calculations of 

soliton excitation can not be done by decomposition in the series of electron – 

phonon coupling constants. 

 Electron – electron interactions, even within the limit of a weak coupling 

constant, produces an energy gap in the spectrum od 1d-metal which initiate the 

Mott transition from metal to semiconducting state. In this case the standard 

perturbation theory is also not applicable. 

 Similar situation occurs in 1d-systems with respect to electron – impurity 

interactions. Started by Mott and Twose theoretical studies of this problem show 

that all one-electron states in 1d disordered system are localized and, as a result, 

cannot be calculated using the perturbation theory. State localization turns the 

direct current conductivity into zero.  
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 Inapplycability of the perturbation theory is one of the main difficulties on 

the way to succeed in the theory of quasi-1d-systems. These difficulties were 

being partly surpassed in different ways. 

 Regardling electron – phonon interaction the most fruitful method is to 

reduce the set of corresponding equations into a completely integrable system 

like the nonlinear Schrodinger equation, the sine-Gordon equation, and others. 

 Advances in description of electron – electron interactions turned out to be 

less pronounced however. The major reason for it lies in the well known 

complications of the many-electron theory for systems with an infinitely large 

number of electrons.  

 Traditional quantum chemistry as one of the many applications of the 

general theory of many-electron systems is based upon the Hartee – Fock 

approximation which came first as ―the word came first‖. Then various many-

electron theories being developed where the wave function were not represented 

by one Slater determinant rather then an infinite series of the determinants. If the 

number of particles in the system grows as  N    then the number of terms  in  

this infinite series must increase at least as aNe , where a is a constant 1 . This 

particular infinite complication of the theory is the main hindrance in it wide 

applications in calculations. It is time now to say that these difficulties are often 

being considerably exaggerated. As a rule, having analyzed the Hamiltonian of 

the system under study using the many-electron theory one can reduce the 

problem to a simpler Hamiltonian or without any loss in quality construct 

multicinfigurational wave function of the system which can be factorized into an 

antisymmetrized product of one- or two-electron functions. As approximations 

for a wave function, besides the EHF approximation described in details in 

paragraph 3 above, the spinless fermion approximation in case of strong 

interactions [209] and the VLG approximation described in previous paragraph 

can be mentioned.   

 In the EHF and spinless fermion approaches a many-electron wave 

function is finally factorized into the product of one-electron functions 

(orbitals), but in the VLG approach the factorization into the product of two-

electron functions (geminals) is performed. 

 Now we draw attention to another aspect of the theory of quasi-1d electron 

systems. Real systems with one-dimensional anisotropy are, in fact, three-

dimensional. In case of a theoretical study it is expedient to mentally separate a 

1d-system out of the real system using its specific properties. This separation  of  
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a quasi-1d-subsystem goes naturally through analysis of the total Hamiltonian 

represented by the sum   

 
,

1ˆ ˆ ˆ
2

n nm

n n m

H H V   , (331)    

where ˆ
nH  is the Hamiltonian of a n-th quasi-1d subsystem (filaments, needles, 

chains, stacks, etc), and the operators ˆ
nmV  describe its interactions with other 

quasi-1d subsystems.  

 Further it is usually assumed that the interaction operators do not include 

terms responsible for electron exchange between separate quasi-1d subsystems. 

Namely this predetermines the subdivision of the Hamiltonian into the sum 

(331). This approximation provides satisfactory description of PAs, donor – 

acceptor molecular conducting crystals as well as many other quasi-1d electron 

systems.   

 Before we consider particular expressions for the Hamiltonians  for 

electron – phonon systems under study it is worthwhile to note the following. 

Most processes in quasi-1d systems are determined by the energy spectrum and 

the nature of elementary excitations. The low-energy region of the spectrum is 

mainly related to a small part of the total number of electrons in the system 

under study. This facilitates a rigorous enough description of electron processes 

occurring in these systems. As example, most interesting properties of polyenes, 

cumulenes, and polyacethylenes originate from the π-electron number equals or 

proportional to the number of carbon atoms and essentially less than the total 

number of all electrons in the system. Studying the most significant properties of 

donor – acceptor molecular conducting crystals it is sufficient to consider one 

electron only per a donor – acceptor pair. In case of TTF-TCNQ crystal it means 

that only one electron out of 208 is to be considered.  

 Despite of the simplifications mentioned above we are still have to restrict 

ourselves with semi-empirical models of quantum chemistry. For example, the 

well known Huckel – Pople (HP) Hamiltonian   
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    

 

       (332) 

is very popular and useful to study many properties of molecules with 

conjugated bonds. 

 As a rule, it is sufficient in (332) to account for resonance interaction (so 

called electron hopping) for the adjacent atoms only, namely: 

  , 1( )mm mm m mR      . (333) 
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 As far as the electron interaction in (332) is conserned only the first several 

terms are usually accounted for. As an example, in the Hubbard – Anderson 

(HA) Hamiltonian   

 0mn mn   .  (334)  

Interaction between two neighbouring atoms is only often used: 

  
0

1 1,

,

.

mn

mn

m n

 


  


 


 (335) 

 Accounting for the bond distance dependence of the resonance integrals it 

is often sufficient to use only the first term of the β-function expansion in the 

vicinity of 0 1.397R A  which corresponds to the C꞊C bond length in benzene 

  0 0( ) ( )R R R      . (336)  

 To account for vibrational degrees of freedom the phonon Hamiltonian    

 
1ˆ ˆ ˆ( )
2

ph ki ki ki

ki

H B B    (337) 

is added to (332), where ˆ
kiB  is a phonon creation operator for the ith mode with 

a quasimomentum k. Starting from (336), the operator of electron – phonon 

subsystem interactions may be chosen as suggested by Frohlich 

  
/ , , , ,

ˆ ˆˆ ˆ ˆ( )e ph qi q i q i k k q

kq

H B B A A   

   , (338) 

where a constant   is proportional to the   derivative with respect to R, that is 

   in (336). Like in other cases, for quasi-1d systems it is often sufficient to use 

only the classical form of the phonon part of the Hamiltonian   

 2 2

1,

1 1ˆ ( ) ,
2 2

ph i mi i mi m i

mi mi

H M R K R R      (339) 

and 

  
/ 0 1,

ˆ ˆˆ ( ) ( . .)e ph m m

m

H R R C C h c 



 


   . (340) 

 The Hamiltonian (332) together with the expressions for the matrix 

elements (333) – (336) allows us to consider the properties of materials based on 

conjugated polymers and of donor – acceptor molecular crystals with quasi-1d 

conductivity such as the crystals based on TTF-TCNQ and their derivatives like 

TSF, TST, and HTSC [106, 206 – 208].  

 The greatest interest with respect to newly synthesized quasi-1d and quasi-

2d systems is attached to the compounds with high electric conductivity. But on 

the way to create good organic conductors the investigators encounter 

difficulties of not only technical but principal nature which relates to an electron 
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instability of a conducting state. Their most important peculiarity lies in the fact 

that a metallic state of a quasi-1d crystal is unstable with respect to a transition 

into a dielectric or semiconductive state. The character of instability and its 

force strength which determines the metal – insulator transition temperature 

depends on structural features of the crystal.  

 Let us consider a system consisting of long needles packed into a 3d-

crystal. The Hamiltonian of each needle is supposed to be the first term in the 

general expression (331) 

  0 1,
ˆ ˆˆ ( . .)m m

m

H C C h c 



 

   , (341) 

where the same notifications as in (332) are used and let the number  of  

particles  N  .  The 1d-system with Hamiltonian (341) is a metal 

independently on the number of electrons in the conduction band Ne with density   

 
1 ˆ ˆe

m m

m

N
C C

N N
 



    , (342) 

that is, with any filling of the conduction band 0 2  . In case when the 

number of electrons and sites  coincides  we  have  a  half-filled  conduction  

band,  eN N   and  the  Fermi  momentum  is  

/ 2Fk a  where a is a 1d-lattice parameter.  

 A 1d-metal with a half-filled conduction band is unstable with respect to 

the following metal – insulator transitions: 

1) The Mott metal – insulator transition resulting from electron interactions. 

Instability of a 1d-metal with respect to this transition arises from the fact that 

electron – electron interactions produce the gap at T = 0° K even within a weak 

coupling constant 0/U    in the Hamiltonian (332). 

2) The Peierls metal – insulator transition is connected with electron – phonon 

interactions. Alongside with the gap a periodic deformation of the crystal occurs 

with the period / Fk . 

3) The Anderson metal – insulator transition resulting from structure disordering 

of the crystal. The instability of a 1d-metal in this case is stimulated by 

localization of electron states even by a weak random field. 

 When coupling constant U is large the Wigner ordering of electrons in 

quasi-1d conductors appears.  

 Early theories of quasi-1d systems came to the conclusion that various 

instabilities in a 1d-metal are being competive [106]. However, further analysis 
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have shown that, in fact, a coexistence of different instabilities is possible. Thus, 

in [193] it was shown that the Mott and Peierls instabilities coexist both at 1   

and at 1/ 2  . In other words, a 1d Mott insulator also undergoes lattice 

deformation with the period / Fk . 

 If we want to obtain a good organic conductor or even superconductoe we 

should stabilize the system with respect to the above transitions. All history of 

quasi-1d metal sysnthesis is, in fact, the history of fighting the above 

instabilities.  

 One of the effective means to fight the metal – insulator transitions is to 

shift electron  density  

  from the values approaching 1, ½, ⅓ and other fractions with small 

denominators. This can be achieved by crystal doping with electron donors ot 

acceptors or by violation of a simple stoichiometric ratio. To understand why 

this simple and clear method is so efficient we shall discuss the instabilities and 

their descriptions for a system with a half-filled band with 1   in more details. 

 The Mott metal – insulator transition. A system with Hamiltonian (341) at 

1   is a metal. Adding an Interaction operator like (331) to (341) we obtain the 

system with the Hubbard Hamiltonian 

  1, 0 , ,

1ˆ ˆ ˆ ˆ ˆ ˆˆ {( )[ . .] }
2

m m m m m m

m

H C C h c UC C C C     



   

      . (343) 

 The spectrum of a cyclic chain with Hamiltonian (343) is the spectrum of 

an insulator at any U > 0, that is, the excitation of states with charge transfer 

requires an energy E . For the first time a conclusion on the energy gap 

formation in such a system appeared in calculations by EHF method [106].    

 The Peierls metal – insulator transition. Let us consider a system with the 

Hamiltonian which can be represented as the sum of (339), (340), and (341)    

 2

0 1 1, 1

1ˆ ˆˆ { [ ( )] . .} ( ) .
2

m m m m m m

m m

H R R C C h c k R R 



  

  
          (344)    

The energy minimum of an infinite chain is reached with the Hamiltonian (344) 

when   

 0 0cos( ),mR R Qam     (345) 

where a is a non-deformed lattice parameter, 0  is the phase of  bond  

deformation,  2 FQ k ,   and  

Fk is the Fermi momentum. 

 For a half-filled band / 2Fk a  and   
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 0
0 2

2 exp .
( )

k
R

 

 

 
    

 (346)  

 The energy spectrum of conduction electrons for a half-filled band is given 

by   

 2 2 2

1,2 0 0

0

2 cos 4 sin ,k R k


 


 
    

 
  (347) 

where ―–‖ sign corresponds to a completely filled conduction subband, and ―+‖ 

sign corresponds to the vacant subband.  

 Thus, the gap in the one-particle spectrum is    

 08 .gE R    (348) 

The ground state energy correction is   

 2 2

0 0 0

1
4 ln .

2
cE R R KR    (349) 

 Some specific features of physics in one dimension remain valid also in 

two dimensions. Theoretical treatment of 2d-models is more complicated. For 

example, The Mott and Anderson metal – insulator transitions can occur also in 

quasi-2d systems. However, the Peierls transition in 2d case can appear only for 

special forms of the Fermi surface in the case of so called ―nesting‖. Generally 

speaking, the conditions for the metal – insulator transitions in 2d-systems are 

stronger than those in 1d case. Passing to 2d-systems one can stabilize 

conducting and superconducting states. 
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