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Abstract. Theoretical studies of Rydberg autoionization resonances in spectra of  lanthanides 

atoms (ytterbium) are carried out within the relativistic many-body perturbation theory in  the 

generalized relativistic energy approach (Gell-Mann and Low S-matrix formalism). The 

accurate theoretical results on the autoionization 4f
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resonances energies and widths are presented and compared with experimental data, obtained 

by using  laser polarization spectroscopy method.  

 

1. Introduction 

In this work, we present the results of our theoretical studies of spectra and spectroscopic parameters 

for heavy atoms, namely, lanthanides atoms (see, for example [1]). Investigations of spectra, optical 

and spectral, radiative and autoionization characteristics for heavy elements atoms and multicharged 

ions are traditionally of a great interest for further developments of quantum atomic optics and atomic 

spectroscopy and different applications in the plasma chemistry, astrophysics, laser physics etc. (see 

Refs. [1–23]). Different atomic spectroscopy methods have been used in describing radiative and 

autoionization characteristics of atomic systems. The well known classical multi-configuration 

Hartree-Fock method (relativistic effects are taken into account in the Pauli approximation or Breit 

Hamiltonian) allowed us to obtain a great number of useful spectral information about light and/or 

not-heavy atomic systems, yet it results in only qualitative description of spectra of the heavy atoms 

and ions. The multi-configuration Dirac-Fock method is the most reliable for multielectron systems 

with a large nuclear charge. In this calculation approach, the one- and two-particle relativistic effects 

are taken into account practically precisely. In essence, special attention should be given to two very 

general and important computer systems for relativistic and Quantum Electro-Dynamics (QED) 

calculations of atomic and molecular properties developed at Oxford, UK, known as GRASP 

(“GRASP”, “Dirac”; “BERTHA”) (see Refs. [1-4] and references therein). Relativistic many-body 

perturbation theory is effectively applied to the computation of spectra of low-lying states for 

lanthanides atoms [5-10].  

Interpretation of spectra, radiative and autoionization characteristics for heavy atoms is quite 

challenging because it is required to correctly account for the exchange-correlation and relativistic 

corrections. Here we present the results of the Rydberg Yb 4f
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states energies, widths and compare with experimental laser polarization spectroscopy data [23].  
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2. Advanced energy approach and relativistic many-body perturbation theory    

As the method of computing has been presented in detail previously, here we summarize only the key 

elements. A model relativistic energy approach in a case of the multielectron atom has been proposed 

by Ivanov-Ivanova et al. [6-8] and its generalized gauge-invariant version has been developed in Refs. 

[9-12].  The approach is based on the Gell-Mann and Low S-matrix formalism, and the relativistic 

many-body perturbation theory that uses the optimized one-quasiparticle representation and an 

accurate account of the relativistic and exchange-correlation effects. In the relativistic case, the Gell-

Mann and Low formula expressed an energy shift ΔE through the QED scattering matrix including the 

interaction of the photon vacuum field and of the laser field. The wave function zeroth basis is found 

from the Dirac equation with a potential, which includes ab initio optimized model potentials (Ivanov-

Ivanova type [6]) or DF potentials, the electric potential of a nucleus – we usually use the Gaussian 

form of the charge distribution in a nucleus [4]. The correlation corrections of the perturbation theory 

of second and higher orders are taken into account with the polarization and screening potentials (see 

Refs. [10-16]).  

Generally speaking, the majority of complex atomic systems possess a dense energy spectrum of 

interacting states with essentially relativistic properties. In the theory of the non-relativistic atom a 

convenient field procedure is applied for calculating the energy shifts ΔE of degenerate states. This 

procedure is connected to secular matrix M diagonalization [7, 8]. In constructing M, the Gell-Mann 

and Low adiabatic formula for ΔE is used. In contrast to the non-relativistic case, the secular matrix 

elements are already complex in the second order of the electrodynamical perturbation theory (first 

order of the interelectron interaction). Their imaginary part of ΔE is connected to radiative decay. In 

this approach, the whole calculation of the energies and decay probabilities of a non-degenerate 

excited state is reduced to the calculation and diagonalization of the complex matrix M. In published 

work by different authors, the Re{ΔE} calculation procedure has been generalized for the case of 

nearly degenerate states, whose levels form a more or less compact group. One of these variants has 

been introduced previously [4, 13, 14]: For a system with a dense energy spectrum, a group of nearly 

degenerate states is extracted and their matrix M is calculated and diagonalized. If the states are well 

separated in energy, the matrix M reduces to one term, equal to ΔE. The non-relativistic secular matrix 

elements are expanded in a Perturbation Theory (PT) series for the interelectron interaction. The 

complex secular matrix M is represented in the form [7,8]:   

 

                                                                  
       0 1 2 3

.M M M M M                                          (1) 

Here, M
(0)

 is the contribution of the vacuum diagrams of all order of PT, and M
(1)

 , M
(2)

, M
(3)

 those of 

the one-, two- and three- quasiparticle diagrams respectively. M
(0)

  is real matrix, proportional to the 

unit matrix, but it determines only the general level shift. We assumed M
(0)

 = 0. The diagonal matrix 

M
(1)

 can be represented as a sum of the independent one-quasiparticle contributions. For simple 

systems (such as alkali atoms and ions) the one-quasiparticle energies can be taken from the 

experiment. Substituting these quantities into (1) one could have summed all the contributions of the 

one -quasiparticle diagrams of all orders of the formally exact QED perturbation theory. However, the 

necessary experimental quantities are not often available. The first two order corrections to Re{M
(2)

} 

have been analyzed  [4] using Feynman diagrams. The contributions of the first-order diagrams have 

been completely calculated. In second order, there are two kinds of diagrams: Polarization and ladder 

ones.  The polarization diagrams take into account the quasiparticle interaction through the polarizable 

core, and the ladder diagrams account for the immediate quasiparticle interaction. Some of the ladder 

diagram contributions as well as some of the three-quasiparticle diagram contributions in all PT orders 

have the same angular symmetry as the two-quasiparticle diagram contributions of the first order. 

These contributions have been incorporated by a modification of the central potential, which must now 

include the screening (anti-screening) of the core potential of each particle by the two others. The 

additional potential modifies the one-quasiparticle orbitals and energies. Therefore, the secular matrix 

can be written as follows:  
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where 
 1

M  is the modified one-quasiparticle matrix (diagonal), and 
 2

M  the modified two-

quasiparticle one. 
 1

M  is calculated by substituting the modified one-quasiparticle energies, and 
 2

M  by means of the first PT order formulae for M
(2)

, putting the modified radial functions of the 

one-quasiparticle states in the radial  integrals.  
In QED theory, the photon propagator D(12) plays the role of the interaction. Naturally the 

analytical form of D(12) depends on the gauge, in which the electrodynamical potentials are written. 
The interelectron interaction operator that accounts for the Breit interaction has been taken as follows:   

                                                       
 

w

ee

ij

ji

ijji V
r

αα1
riexprrV 


  ,                                  (3)                              

where, as usual, i are the Dirac matrices. In general, the results of all approximate calculations 

depend on the gauge.  Yet the correct result must be gauge-invariant. The gauge dependence of the 

amplitudes of the photo processes in the approximate calculations is well known. This is investigated 

in detail by Grant, Armstrong, Aymar and Luc-Koenig, Glushkov-Ivanov et al., see Refs. [1-4,9-15]. 

Grant has investigated the gauge connection with the limiting non-relativistic form of the transition 

operator and has formulated the conditions for approximate functions of the states, in which the 

amplitudes of the photo processes are gauge invariant. These results remain true in the energy 

approach because the final formulae for the probabilities coincide in both approaches. Glushkov-

Ivanov developed a new relativistic gauge-conserved version of the energy approach [11]. Here we 

apply this approach for generating the optimized relativistic orbitals basis in the zeroth approximation 

of the many-body perturbation theory [1]. Below we will be interested in studying the spectra of the 

autoionization resonances in the ytterbium atom and calculate their energies and widths. The excited 

states of the ytterbium atom can be treated as the states with two-quasiparticles above the electron core 

[Xe]4f
14

.  

Within the standard energy approach [8-11], the autoionization width is determined by the square 

of an electron interaction matrix element having the form:  

 

                                                    




















1234Re1][

31

312
1

43211234 Q
mm

jj
jjjjV                (4) 

The real part of the electron interaction matrix element is determined using expansion in terms of 

Bessel functions [17-19, 26]:                             

                                      

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21
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rrPrJrJ
rrr

r .                   (5) 

The Coulomb part 
Qul

Q  is expressed in terms of radial integrals R , angular coefficients S : 
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                                                                                                                                                              (6) 

As a result, the autoionization decay probability is expressed in terms of ReQ(1243) matrix 

elements. We present an example below:   
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Here, f is the large component of radial part of single electron state Dirac function and the function Z 

is connected with the Bessel functions. The angular coefficient is defined in the standard way as above 

[26]. The Breit part of Q is defined in similar way as above, but our interest focuses on the real part.  

The Breit interaction is known to change considerably the Auger decay dynamics in some cases (see, 

for example, Refs. [8]). Determination of the radiation decay probabilities (oscillator strengths) 

simplifies to calculating the imaginary matrix elements of the interaction. The calculation of radial 

integrals ReR(1243) is reduced to the solution of a system of  differential equations according to the 

Ivanova-Ivanov  method [26].  The system of differential equations includes also equations for 

functions f/r
æ-1

, g/r
æ-1

,  1
Z ,  2

Z . The formulas for the autoionization (or “Auger”) decay probability 

include the radial integrals R(k), where one of the functions describes electron in the continuum 

state. When calculating this integral, the correct normalization of the function k  needs attention. The 

correctly normalized function should have the following asymptotic behaviour for  r0: 
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It is important to note that the calculation is carried out in the jj-coupling scheme representation. 

The transition to the intermediate coupling scheme has been accomplished by diagonalizing the 

secular matrix. Indeed, only Re{M} should be diagonalized. The imaginary part is converted by means 

of the matrix of eigenvectors  mkC , obtained by diagonalization of Re{M}: 

                                                                             Im mk mi ij jk

ij

M C M C                                          (12) 

ijM  are the matrix elements in the  jj-coupling scheme, and 
mkM  in the intermediate coupling scheme 

representation. Other details can be found in Refs. [6-11,13-19]. 

3. Results  

In Table 1 we present the experimental data (Jong-Hoon et al [22,23]) and theoretical results for 

energies and widths of the excited (autoionization) states of the 4f
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             Table 1. Energies E (cm
-1

) and widths  (cm
-1

) of the 4f
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 4f
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N 
Exp. 

Eexp 

Exp. 

exp 

Theory 

E 

Theory 

 

Exp. 

Eexp 

Exp. 

exp 

Theory 

E 

Theory 

 

12 70120.5 1.5 70121 1.7 70963.6 0.5 70965 0.7 

13 70482.0 0.4 70483 0.5 71105.0 0.4 71107 0.5 

15 70914.8 1.2 70916 1.4 71312.2 1.4 71313 1.6 

20 71428.1 0.6 71429 0.7 71559.1 0.8 71561 0.9 

25 71612.5 1.3 71611 1.5 71672.5 0.5 71673 0.8 

26 71633.3 0.6 71631 0.8 71687.5 0.5 71689 0.7 

30 71698.8 0.5 71697 0.7 71732.4 0.4 71734 0.5 

46 -  -    71797 0.4 -  -    71813 0.3 
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The smallness of the resonance widths requires attention. In our interpretation, narrow resonances 

are related to the complex energy structure of the 4f-shell atoms. Consequently, unusual behavior 

occurs for autoionization resonances and their decay mechanisms, especially in comparison with the 

standard spectroscopy (for inert gases, alkali atoms). We emphasize that that our theory provides a 

physically reasonable agreement with experimental results. Finally, it should be noted that the studied 

autoionization resonances (Rydberg states are more preferable) can be very useful, for example, in 

new laser photo-ionization schemes of separating the Yb isotopes and nuclear isomers [24].  
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