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a b s t r a c t

In this paper chaotic behavior in the nitrogen dioxide and sulphurous anhydride
concentration time series at two sites in Gdansk region is investigated. To reconstruct an
attractor, the time delay and embedding dimension are needed. The former is determined
by the methods of autocorrelation function and average mutual information, and the latter
is calculated by means of correlation dimension method and algorithm of false nearest
neighbors. It was shown that the low-dimensional chaos existed in the time series under
investigation. The spectrum of Lyapunov exponents was reconstructed as well as both
Kaplan–Yorke dimension and Kolmogorov entropy that inversely proportional to the
predictability limit are calculated. Non-linear prediction method is used for the time series.
It is shown that even though the simple procedure is used to construct the non-linear
model, the results are quite satisfactory.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Every science purposes predicting a future state of
system under consideration. Consequently, the main
problem of science can be defined as: ‘‘Is it possible to
predict a future behavior of process using its past states?’’
Conventional approach applied to resolve this problem
consists in building an explanatory model using an initial
data and parameterizing sources and interactions between
process properties. Unfortunately that kind of approach is
realized with difficulties, and its outcomes are insuffi-
ciently correct; moreover, sources and/or interactions of
process cannot always be exactly defined. For example, the
development of atmospheric numerical models is in prog-
ress during at least half a century, but short-range weather
forecasts can be only considered as successful and forecast
skill decreases with increasing of forecast range (see e.g.
Kalnay, 2003). Most models, that are currently used to
estimate the air pollution level, are either deterministic or

statistical (e.g. Boy et al., 2006; Dirks et al., 2006), but their
skilfulness are still limited due to both inability for
describing non-linearities in pollutant time series and lack
of understanding involved physical and/or chemical
processes. In Gdansk region, the Agency of Regional Air
Quality Monitoring (ARMAAG) provides presently the 24-h
forecasts of air quality levels using the model called
CALMET/CALPUFF (CALPUFF).

According to the modern theory of prediction, time
series is considered as random realization, when the
randomness is caused by a complicated motion with many
independent degrees of freedom. Chaos is alternative of
randomness and occurs in very simple deterministic
systems. Although chaos theory places fundamental limi-
tations for long-range prediction (see e.g. Abarbanel et al.,
1993), it can be used for short-range prediction since ex
facte random data can contain simple deterministic rela-
tionships with only a few degrees of freedom.

The systematic study of chaos is of recent date, origi-
nating in the 1960s. One important reason for this is that
linear techniques, so long dominant within applied math-
ematics and the natural sciences, are inadequate when
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considering chaotic phenomena since the amazingly
irregular behavior of some non-linear deterministic
systems was not appreciated and when such behavior was
manifest in observations, it was typically explained as
stochastic. Starting from the meteorologist Edward Lorenz,
who observed extreme sensitivity to changes to initial
conditions of a simple non-linear model simulating atmo-
spheric convection (Lorenz, 1963), the experimental
approach relies heavily on the computational study of
chaotic systems and includes methods for investigating
potential chaotic behavior in observational time series
(see Tsonis, 1992; Wiggins, 1997; Ott, 2002).

During the last two decades, many studies in various
fields of science have appeared, in which chaos theory was
applied to a great number of dynamical systems, including
those are originated from nature (e.g. Frison et al., 1999;
Faure and Korn, 2001; Baas, 2002; Sivakumar, 2004, and
a lot of another). Ecologists have also paid attention to the
methodology with potentially wide scope (May, 1995;
Letellier and Aziz-Alaoui, 2002; Sprott et al., 2005; Facchini
et al., 2007; Mandal et al., 2007). On the other hand, the
studies concerning non-linear behavior in the time series of
atmospheric constituent concentrations are sparse, and
their outcomes are ambiguous. For example, Lanfredi and
Macchiato (1997) have investigated time series of NO2, CO,
and O3 in Bristol and New Castle (Pennsylvania, USA), and
have not concluded evidence of chaos. On the contrary,
both Chen et al. (1998) and Koçak et al. (2000) have shown
that O3 concentrations in Cincinnati area (Ohio, USA) and
Istanbul City (Turkey), respectively, are evidently chaotic,
and non-linear prediction method provides quite satisfac-
tory results. Moreover, Paluš et al. (2001) have denoted
possible improvement of forecast skill if non-linear
methods are applied. Using artificial neural network, where
input data are the results of attractor dimension recon-
struction, Chelani (2005) have obtained satisfactory short-
range forecasts of PM10 concentration.

The above-mentioned studies concerning the atmo-
spheric constituent concentrations allow concluding that
methodology from chaos theory can be applied and the
short-range forecast by the non-linear prediction method
can be satisfactory. In contrast to conventional approach
utilizing explanatory models, methodology from chaos
theory do not require an in-depth knowledge of driving
processes, nor do they require the form of the model to be
specified a priori. In other words, the non-linear model
looks much more ‘simpler’ than deterministic or statistical
ones since it requires only that measurements must be
comparatively long and continuous. From the other hand,
time series are, however, not always chaotic, and chaotic
behavior must be examined for each time series. Therefore,
we shall (i) study the concentration of atmospheric
constituents in Gdanck region (Poland) to select only those
measurements, which are defined as chaotic, and (ii) build
non-linear prediction model for the selected time series.

2. Data

In the present study, nitrogen dioxide (NO2) and
sulphurous anhydride (SO2) concentration data observed at
the sites of Gdansk region (Poland) during 2003 year are

used. There are 10 sites in the region (Fig. 1), but the time
series are continuous at two ones only, Sopot (site 6) and
Gdynia (site 9). We use 1-year hourly concentrations, con-
sisting of a total of 8760 data points. Fig. 2 shows the vari-
ation of these time series, and Table 1 presents some of the
important statistics of the series. As can be seen in Fig. 2, the
concentrations exhibit significant variations without any
apparent cyclicity, i.e. a visual inspection of the (irregular)
concentration time series does not provide any clues
regarding its dynamical behavior, whether chaotic or
stochastic. In the figure, horizontal dashed lines indicate the
lower limits (96 mg/m3 for NO2 and 89 mg/m3 for SO2) for the
index 2 of air pollution as provided by the EU Directives on
Air Quality. A few events with values exceeding these limits
have occurred during the year, and all the events were
registered in winter or early spring, whereas in summer and
autumn the concentrations of the pollutants were on the
average lower especially for the sulphurous anhydride.

Although the distance between the sites 6 and 9 is only
about 7 km and they are located on the beach of Gdansk
Bay (the coordinates of sites 6 and 9 are 54�2405400N,
18�3404700E and 54�2904000N, 18�3301500E, respectively), both
Table 1 and Fig. 2 show significant differences. For example,
the absolute maxima (minima) at the site 6 are slightly
higher (lower) than those at the site 9 (see Table 1). Also,
there is a considerable increase of SO2 concentration was
registered only at the site 6 during early December,
whereas the middle November peak has occurred only at
the site 9. The overall variations of the pollutants at the two
sites are nearly coherent with the exception of the above-
mentioned cases and the lack of SO2 concentration increase
at the site 6 at the end of March. It is noteworthy that the
time series of the concentrations not obey the Gaussian
distribution (see Table 1).

3. Testing for chaos in time series

Let us consider scalar measurements sðnÞ ¼ sðt0 þ nDtÞ,
where t0 is the start time, Dt is the time step, and n is the

site 4

site 10

Gdansk

Gdynia

 Sopot 
site 6 

site 9

Gdansk Bay N

S

site 3

site 8 site 2

site 1
site 5

5 km

Fig. 1. Location of sites in Gdansk region, Poland. Site 7 is located southward
and not included in figure.
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number of the measurements. In a general case, s(n) is any
time series, particularly the concentrations of atmospheric
pollutants. Since processes resulting in the chaotic behavior
are fundamentally multivariate, it is necessary to recon-
struct phase space using as well as possible information
contained in the s(n). Such a reconstruction results in
a certain set of d-dimensional vectors y(n) replacing the
scalar measurements. Packard et al. (1980) introduced
the method of using time-delay coordinates to reconstruct
the phase space of an observed dynamical system. The
main idea is that the direct use of the lagged variables
s(nþ s), where s is some integer to be determined, results
in a coordinate system in which the structure of orbits in

phase space can be captured. Then using a collection of
time lags to create a vector in d dimensions,

yðnÞ ¼ ½sðnÞ; sðnþ sÞ; sðnþ 2sÞ;.; sðnþ ðd� 1ÞsÞ�;

the required coordinates are provided. In a non-linear
system, the sðnþ jsÞ are some unknown non-linear
combination of the actual physical variables that comprise
the source of the measurements. The dimension d is also
called the embedding dimension, dE. The example of the
Lorenz attractor given by Abarbanel et al. (1993) is a good
choice to illustrate the efficiency of the method.

3.1. Time lag

The choice of proper time lag is very important for the
subsequent reconstruction of phase space. If s is chosen too
small, then the coordinates sðnþ jsÞ and sðnþ ðjþ 1ÞsÞ are
so close to each other in numerical value that they cannot
be distinguished from each other. Similarly, if s is too large,
then sðnþ jsÞ and sðnþ ðjþ 1ÞsÞ are completely indepen-
dent of each other in a statistical sense. Also, if s is too small
or too large, then the correlation dimension of attractor can
be under- or overestimated, respectively (Havstad and
Ehlers, 1989). It is therefore necessary to choose some
intermediate (and more appropriate) position between
above cases.
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Fig. 2. Time series plot for 1-year atmospheric pollutant data from 2003 at two sites of Gdansk region, Poland. Horizontal dashed lines indicate lower limits
(96 mg/m3 for NO2 and 89 mg/m3 for SO2) for the index 2 of air pollution as provided by the EU Directives on Air Quality.

Table 1
Some statistics of air pollutant concentrations at the sites of Gdansk region
(Poland) during January–December 2003

Statistics Site 6 (Sopot) Site 9 (Gdynia)

NO2 SO2 NO2 SO2

Number of data 8760 8760 8760 8760
Mean (mg/m3) 15.46 9.13 17.04 11.84
Maximum value (mg/m3) 107.53 111.99 101.13 95.47
Minimum value (mg/m3) 2.29 3.99 3.92 5.59
Standard deviation (mg/m3) 11.99 6.94 11.22 7.19
Skewness 2.26 4.79 1.81 3.89
Kurtosis 7.61 38.15 4.43 22.78
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First approach is to compute the linear autocorrelation
function

CLðdÞ ¼
1
N

PN
m¼1½sðmþ dÞ � s�½sðmÞ � s�

1
N

PN
m¼1½sðmÞ � s�2

; (1)

where s ¼ ð1=NÞ
PN

m¼1 sðmÞ, and to look for that time lag
where CL(d) first passes through 0 (Holzfuss and Mayer-
Kress, 1986). This gives a good hint of choice for s at that
sðnþ jsÞ and sðnþ ðjþ 1ÞsÞ are linearly independent.
However, a linear independence of two variables does not
mean that these variables are non-linearly independent
since a non-linear relationship can differs from linear one.
It is therefore preferably to utilize approach with a non-
linear concept of independence, e.g. the average mutual
information.

Briefly, the concept of mutual information can be
described as follows. Let there are two systems, A and B,
with measurements ai and bk. The amount one learns in bits
about a measurement of ai from a measurement of bk is
given by the arguments of information theory (Gallager,
1968) as

IABðai; bkÞ ¼ log2

�
PABðai; bkÞ

PAðaiÞPBðbkÞ

�
;

where the probability of observing a out of the set of all A is
PA(ai), and the probability of finding b in a measurement B
is PB(bi), and the joint probability of the measurement of
a and b is PAB(ai, bk). The mutual information I of two
measurements ai and bk is symmetric and non-negative,
and equals to 0 if only the systems are independent. The
average mutual information between any value ai from
system A and bk from B is the average over all possible
measurements of IAB(ai, bk).

To place this definition into the context of observations
from a certain physical system, let us think of the sets of
measurements s(n) as the A and of the measurements
a time lag s later, sðnþ tÞ, as the B set. The average mutual
information between observations at n and nþ s is then

IABðsÞ ¼
X
ai ;bk

PABðai; bkÞIABðai; bkÞ: (2)

Now we have to decide what property of I(s) we should
select, in order to establish which among the various values
of s we should use in making the data vectors y(n). Fraser
and Swinney (1986) have suggested, as a prescription, that
it is necessary to choose that s where the first minimum of
I(s) occurs.

3.2. Embedding dimension

The goal of the embedding dimension determination is
to reconstruct a Euclidean space Rd large enough so that the
set of points dA can be unfolded without ambiguity. In
accordance with the embedding theorem, the embedding
dimension, dE, must be greater, or at least equal, than
a dimension of attractor, dA, i.e. dE� dA. In other words, we
can choose a fortiori large dimension dE, e.g. 10 or 15, since
the previous analysis provides us prospects that the
dynamics of our system is probably chaotic. However, two

problems arise with working in dimensions larger than
really required by the data and time-delay embedding
(Abarbanel et al., 1993). First, many of computations for
extracting interesting properties from the data require
searches and other operations in Rd whose computational
cost rises exponentially with d. Second, but more signifi-
cant from the physical point of view, in the presence of
noise or other high-dimensional contamination of the
observations, the extra dimensions are not populated by
dynamics, already captured by a smaller dimension, but
entirely by the contaminating signal. In too large an
embedding space one is unnecessarily spending time
working around aspects of a bad representation of the
observations which are solely filled with noise. It is there-
fore necessary to determine the dimension dA.

There are several standard approaches to reconstruct
the attractor dimension (see, e.g., Abarbanel et al., 1993;
Schreiber, 1999), but let us consider in this study two
methods only.

The correlation integral analysis is one of the widely
used techniques to investigate the signatures of chaos in
a time series. The analysis uses the correlation integral, C(r),
to distinguish between chaotic and stochastic systems. To
compute the correlation integral, the algorithm of Grass-
berger and Procaccia (1983) is the most commonly used
approach. According to this algorithm, the correlation
integral is computed as

CðrÞ ¼ lim
N/N

2
Nðn� 1Þ

X
i;j

ð1�i<j�NÞ

H
�
r �

��yi � yj

���; (3)

where H is the Heaviside step function with H(u)¼ 1 for
u> 0 and H(u)¼ 0 for u� 0, r is the radius of sphere
centered on yi or yj, and N is the number of data
measurements. If the time series is characterized by an
attractor, then the correlation integral C(r) is related to the
radius r given by

d ¼ lim
r/0
N/N

log CðrÞ
log r

; (4)

where d is correlation exponent that can be determined as
the slope of line in the coordinates log C(r) versus log r by
a least-squares fit of a straight line over a certain range of r,
called the scaling region.

If the correlation exponent attains saturation with an
increase in the embedding dimension, then the system is
generally considered to exhibit chaotic dynamics. The
saturation value of the correlation exponent is defined as
the correlation dimension (d2) of the attractor. The nearest
integer above the saturation value provides the minimum
or optimum embedding dimension for reconstructing the
phase space or the number of variables necessary to model
the dynamics of the system. On the other hand, if the
correlation exponent increases without bound with
increase in the embedding dimension, the system under
investigation is generally considered stochastic.

Another method for determining dE comes from asking
the basic question addressed in the embedding theorem:
when has one eliminated false crossing of the orbit with
itself which arose by virtue of having projected the
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attractor into a too low-dimensional space? In other words,
when points in dimension d are neighbors of one other? By
examining this question in dimension one, then dimension
two, etc. until there are no incorrect or false neighbors
remaining, one should be able to establish, from geomet-
rical consideration alone, a value for the necessary
embedding dimension. Such an approach was described by
Kennel et al. (1992).

In dimension d each vector y(k) has a nearest neighbor
yNN(k) with nearness in the sense of some distance func-
tion. The Euclidean distance in dimension d between y(k)
and yNN(k) we call Rd(k):

R2
dðkÞ ¼

�
sðkÞ � sNNðkÞ

�2þ
�
sðkþ sÞ � sNNðkþ sÞ

�2þ/

þ
�
sðkþ sðd� 1ÞÞ � sNNðkþ sðd� 1ÞÞ

�2
: (5)

Rd(k) is presumably small when one has a lot a data, and
for a data set with N measurements, this distance is of order
1/N1/d. In dimension dþ 1 this nearest neighbor distance is
changed due to the (dþ 1)st coordinates s(kþ ds) and
sNNðkþ dsÞ to

R2
dþ1ðkÞ ¼ R2

dðkÞ þ
�
sðkþ dsÞ � sNNðkþ dsÞ

�2
: (6)

We can define some threshold size RT to decide when
neighbors are false. Then if

		sðkþ dsÞ � sNNðkþ dsÞ
		

RdðkÞ
> RT; (7)

the nearest neighbors at time point k are declared false.
Kennel et al. (1992) showed that for values in the range
10� RT� 50 the number of false neighbors identified by
this criterion is constant. In practice, the percentage of false
nearest neighbors is determined for each dimension d.
A value at which the percentage is almost equal to 0 can be
considered as the embedding dimension.

3.3. Results for atmospheric pollutant time series

As it was mentioned above, the first step, which is
needed to reconstruct the phase space, is to chose an
appropriate time lag s. For that purpose, we have used
methods from Section 3.1. Note that the mutual information
and autocorrelation function for some attractors behave in
a different way. For example, these approaches applied to
the Mackey–Glass system (Mackey and Glass, 1977) provide
equal values of s, i.e. it really does not matter whether the
autocorrelation function or the mutual information is used.
On the other hand, for the system of Lorenz (1963) the
mutual information method provides s which is one order
lesser than that determined by the autocorrelation function.
However, before making up any final decision, let us make
some remarks on using the autocorrelation function. Holz-
fuss and Mayer-Kress (1986) have determined the time lag
as a value at which the autocorrelation function first crosses
the 0. Other approaches consider the time lag at which the
autocorrelation function attains a certain value, say 0.1
(Tsonis and Elsner, 1988) or 0.5 (Schuster, 2005). An ambi-
guity is what value of autocorrelation function must be
accepted? For observational time series, a practical

approach is to experiment with different s to ascertain its
effect on the dimension of attractor (e.g. Sivakumar, 2000;
Islam and Sivakumar, 2002).

Table 2 summarizes the results for the time lag calculated
for the first thousand values of the time series. It is note-
worthy that the autocorrelation function crosses the 0 only
for the NO2 time series at the site 9, whereas this statistic for
other time series remains positive. Of course, the values,
where the autocorrelation function first crosses 0.1, can be
chosen as s, but Islam and Sivakumar (2002) showed that an
attractor cannot be adequately reconstructed for very large
values of s. Before making up final decision we therefore
calculate the dimension of attractor for all values in Table 2
using methods described in Section 3.2.

The large values of s result in impossibility to determine
both the correlation exponents and the attractor dimen-
sions (see Table 3) using the method of Grassberger and
Procaccia (1983). Such an outcome can be explained not
only inappropriate values of s but also shortcomings of
correlation dimension method (see e.g. Sivakumar, 2000;
Khokhlov et al., 2008). Moreover, if the algorithm of Kennel
et al. (1992) is used, then the percentages of false nearest
neighbors are comparatively large in the case of large s. On
the other hand, if the time lags determined by the average
mutual information are used, then the algorithm of false
nearest neighbors provides the embedding dimension
dE¼ 6 for all air pollutants. Since we assume that the
dynamics of system is preferably non-linear, the latter
value will be used in the following investigations.

4. Model of non-linear prediction

Before building a model of non-linear prediction, it is
important to define how predictable is a chaotic system?
The predictability can be estimated by the Kolmogorov
entropy, which is proportional to the sum of positive Lya-
punov exponents. The spectrum of Lyapunov exponents is
one of dynamical invariants for non-linear system with
chaotic behavior. The chaotic motion of physical system is
not unpredictable even all the instabilities one encounters
in phase space. The limited predictability of the chaos is
quantified by the local and global Lyapunov exponents,
which can be determined from the measurements.

4.1. Lyapunov exponents

The Lyapunov exponents measure the average local
rates of expansion and contraction of chaotic system. The

Table 2
Time lags (h) subject to different values of autocorrelation function, CL,
and first minima of average mutual information, Imin1, for the time series
of NO2 and SO2 at the sites of Gdansk region (Poland) during January–
December 2003

Site 6 (Sopot) Site 9 (Gdynia)

NO2 SO2 NO2 SO2

CL¼ 0 – – 102 –
CL¼ 0.1 136 232 53 147
CL¼ 0.5 6 12 4 26
Imin1 9 19 8 17
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Lyapunov exponents are related to the eigenvalues of the
linearized dynamics across the attractor. Negative values
show stable behavior while positive values show local
unstable behavior. For chaotic systems, being both
stable and unstable, the Lyapunov exponents indicate
the complexity of the dynamics. The largest positive
value determines some ‘‘average’’ prediction limit. High-
dimensional chaotic systems tend to have very large
positive exponents and predictions may be of little use.
Since the advent of chaos, the spectrum of Lyapunov
exponents can be considered a measure of the effect of
perturbing the initial conditions of a dynamical system.
Positive and negative Lyapunov exponents can coexist in
a dissipative system, which is then chaotic.

Since the Lyapunov exponents are defined as asymptotic
average rates, they are independent of the initial condi-
tions, and hence the choice of trajectory, and therefore they
do comprise an invariant measure of the attractor. In fact, if
one manages to derive the whole spectrum of Lyapunov
exponents, other invariants of the system, i.e. the Kolmo-
gorov entropy, K, and the attractor’s dimension can be
found. The Kolmogorov entropy measures the average rate
at which information about the state is lost with time. An
estimate of this measure is the sum of the positive Lyapu-
nov exponents

K ¼
Xj

a¼1

la: (8)

The average limit of predictability, Prmax, is equal to the
inverse of the Kolmogorov entropy, i.e. Prmax¼ 1/K, since
the units of Lyapunov exponents are inverse times. It is
naturally that predictability can vary considerably
throughout phase space, and the Lyapunov exponents
constitute a particular way of averaging over these varia-
tions (Schreiber, 1999).

The estimate of the dimension of the attractor is
provided by the Kaplan and Yorke (1979) conjecture

dL ¼ jþ
Pj

a¼1 la		ljþ1

		 : (9)

Note that in Eqs. (8)–(10) j is such that
Pj

a¼1 la > 0 andPjþ1
a¼1 la < 0, and the Lyapunov exponents are taken in

descending order. The dimension dL gives values close to
the dimension estimates discussed earlier and is preferable
when estimating high dimensions.

There are a few approaches to computing the Lyapunov
exponents. One of them computes the whole spectrum and

is based on the Jacobi matrix of system. In the case where
only observations are given and the system function is
unknown, the matrix has to be estimated from the data. In
this case, all the suggested methods approximate the
matrix by fitting a local map to a sufficient number of
nearby points. In this study, we use the method with the
linear fitted map proposed by Sano and Sawada, 1985,
although the maps with higher order polynomials can be
also used.

4.2. Non-linear modelling

Non-linear modelling of chaotic processes is based on
the concept of compact geometric attractor on which
observations evolve. Since the orbit is continually folded
back on itself by the dissipative forces and the non-linear
part of the dynamics, some orbit points yrðkÞ,
r ¼ 1;2;.;NB can be found in the neighborhood of any
orbit point y(k), at that the points yr(k) arrive in the
neighborhood of y(k) at quite different times than k. One
can then choose some interpolation functions, which
account for whole neighborhoods of phase space and how
they evolve from near y(k) to whole set of points near
y(kþ 1) (Abarbanel et al., 1993).

The implementation of this concept is to build param-
etrized non-linear functions F(x, a) which take y(k) into
y(kþ 1)¼ F(y(k), a) and then use various criteria to deter-
mine parameter a. Further, since one has the notion of local
neighborhoods, one can build up one’s model of the
process neighborhood by neighborhood and, by piecing
together these local models, produce a global non-linear
model that capture much of the structure in the attractor
itself.

It is noteworthy that no clue is given by the data as to
the kind of model that would be appropriate for the source
of chaotic data. It is likely there is no algorithmic solution to
how to choose models from data alone (Rissanen, 1989).
Schreiber (1999) showed that most widespread form of
local model is quite simple:

sðkþ DkÞ ¼ aðkÞ0 þ
XdA

j¼1

aðkÞj sðk� ðj� 1ÞsÞ; (10)

where Dk is the time over which predictions are being
made. The coefficients aðkÞj , may be determined by a least-
squares procedure, involving only points s(k) within a small
neighborhood around the reference point. Thus, the coef-
ficients will vary throughout phase space. The fit procedure

Table 3
Correlation exponents (d2) and embedding dimensions determined by false nearest neighbors method (dN) with percentage of false neighbors (in paren-
theses) calculated for various time lags (s) for the time series of NO2 and SO2 at the sites of Gdansk region (Poland) during January–December 2003

Site 6 (Sopot) Site 9 (Gdynia)

NO2 SO2 NO2 SO2

s d2 dN s d2 dN s d2 dN s d2 dN

136 n/sa 11 (6.2) 232 n/sa 10 (8.8) 53 7.62 9 (9.2) 147 n/sa 10 (9.8)
6 5.42 6 (1.3) 12 1.64 6 (1.2) 4 5.29 6 (1.1) 26 3.95 6 (1.1)
9 5.31 6 (1.2) 19 1.58 6 (1.2) 8 5.31 6 (1.1) 17 3.40 6 (1.2)

a The saturation is not registered.

V.N. Khokhlov et al. / Atmospheric Environment 42 (2008) 7284–7292 7289



amounts to solving (dAþ 1) linear equations for the (dAþ 1)
unknowns.

When fitting the parameters a, several problems are
encountered that seem purely technical in the first place
but are related to the non-linear properties of the system. If
the system is low-dimensional, the data that can be used
for fitting will locally not span all the available dimensions
but only a subspace, typically. Therefore, the linear system
of equations to be solved for the fit will be ill-conditioned.
However, in the presence of noise the equations are not
formally ill-conditioned but still the part of the solution
that relates the noise directions to the future point is
meaningless (Schreiber, 1999).

4.3. Short-range forecast of atmospheric pollutant time series

At first, Table 4 shows the global Lyapunov exponents. It
can note that the Kaplan–Yorke dimensions, which are also
the attractor dimensions, are smaller than the dimensions
obtained by the algorithm of false nearest neighbors. Also,
there are the two positive li for the each time series under
consideration. Since the Lyapunov exponents determine
conversion rate from a sphere into an ellipsoid, then the
smaller sum of positive exponents results in the more
stable dynamical system and, correspondingly, the higher
predictability. The presence of the two (from six) positive li

suggests the system broadens in the line of two axes and
converges along four axes that in the six-dimensional
space. The time series of SO2 at the site 9 have the highest
predictability (slightly more than 2 days), and other time
series have the predictabilities slightly less than 2 days.
Such the predictability is quite sufficient.

To use the non-linear prediction method, it is necessary
to solve another one problem which can be defined as how
much exactly nearest neighbors, NN, must be considered to
obtain satisfactory results of the forecasts? This problem
springs from the methodology used here for local model-
ling, when a collection of near neighbors of the point y(k) is
taken and an averaged value of their images is considered
as the ‘prediction’ (Abarbanel et al., 1993). The solution can

be arrived at if a few forecasts are accomplished with
various number of NN, and their results are compared with
original data. As a rule, the coefficient of correlation rises to
a maximum (Islam and Sivakumar, 2002). In the current
study, we use this approach the last 100 points of the time
series; the 24-h forecasts are accomplished on the basis of
previous 8660 data points. Table 5 summarizes the results
of our experiments. As it was expected, the coefficients of
correlation rise to the maxima at some number of NN. It is
noteworthy that these coefficients are both large and
significant. Thus, we further use NN¼ 180 for NO2 and
NN¼ 260 for SO2 at the site 6, as well as NN¼ 210 for NO2

and NN¼ 250 for SO2 at the site 9.
Fig. 3 shows, as an example, the original data and 24-h

forecasts of pollutants at the site 6. As can be seen, almost
all the maxima in the original data have the counterparts in
the forecast, but the differences between them can be
sufficiently great. This discrepancy is well illustrated
by Fig. 4; all values exceeding w35 mg/m3 for NO2 and
w15 mg/m3 for SO2 were underestimated by the non-linear
model. Some possible causes for such insufficient forecasts
of comparatively large concentrations will be considered in
the next section. Nevertheless, the root-mean-square
errors are 6.025 and 5.636 for NO2 and SO2, respectively.
The results of the short-range forecasts can be thus
considered as quite acceptable.

5. Discussion and conclusions

In this study, we have analyzed the time series of
pollutants in the atmosphere using methodology from
chaos theory. Our results show that these time series are
resulted from the low-dimensional chaos. In spite of the
fact that the embedding dimensions for each time series
are identical (dN¼ 6), this outcome is not regularity (see,
e.g. Chen et al., 1998; Koçak et al., 2000). Also, the corre-
lation dimensions are calculated using the algorithm of
Grassberger and Procaccia (1983). It is noteworthy that the
nearest integer above the saturation value provides the
minimum or optimum embedding dimension for recon-
structing the phase space or the number of variables
necessary to model the dynamics of the system. This
concept can be applied to the dynamics of NO2 time series,
since the embedding dimension determined by both the
correlation dimension method and the algorithm of false
nearest neighbors is identical. In this case, the number of
variables necessary to model the dynamics of the system
equals six. From the other hand, the analysis of correlation
dimension provides only the number of variables, but not
their physical meaning.

In the previous section, we have mentioned that our
non-linear model underestimate comparatively large

Table 4
First two Lyapunov exponents (l1 and l2), Kaplan–Yorke dimension (dL),
and average limit of predictability (Prmax, h) for the time series of NO2 and
SO2 at the sites of Gdansk region (Poland) during January–December 2003

Site 6 (Sopot) Site 9 (Gdynia)

NO2 SO2 NO2 SO2

l1 0.0184 0.0164 0.0189 0.0150
l2 0.0061 0.0066 0.0052 0.0052
dL 4.11 5.01 3.85 4.60
Prmax 40 43 41 49

Table 5
Coefficient correlation (r) between actual data and 24-h forecast subject to number of neighbors (NN) for last 100 points of the time series of NO2 and SO2 at
the sites of Gdansk region (Poland) during January–December 2003

Site 6 (Sopot) Site 9 (Gdynia)

NO2 SO2 NO2 SO2

NN 80 180 200 80 260 280 80 210 230 80 250 270
r 0.95 0.96 0.96 0.91 0.94 0.94 0.96 0.97 0.97 0.93 0.94 0.94
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values of concentrations. In our opinion, if unavoidable
simulation errors are not taken into account, there are at
least two causes for such discrepancy. First one springs
from the fact that we use relatively simple method of local
modelling. If more complicated procedure will be applied
then the forecasts can improve. Second one is resulted from
the ubiquity of noise in measurements.

Kantz and Schreiber, 2003 have summarized the
following examples of the noise effects: (1) self-similarity
of the attractor is broken; (2) phase-space reconstruction
appears as high-dimensional on small length scales; (3)
nearby trajectories diverge diffusively rather than expo-
nentially; and (4) prediction error is found to be bounded
from below no matter which prediction method is used and
to how many digits the data are recorded. The noise limits
the accuracy of predictions in three possible ways: (1) the
prediction error cannot be smaller than the noise level,

since the noise part of the future measurement cannot be
predicted; (2) the values on which the predictions are
based are themselves noisy, inducing an error proportional
to and of the order of the noise level; and (3) in the generic
case, where the dynamical evolution has to be estimated
from the data, this estimate will be affected by noise
(Schreiber and Kantz, 1996).

Conceivably, knowing the noise level in a time series can
help one at least to understand why errors occur in the
forecast. In this study, we used methodology proposed by
Hu et al. (2004) to estimate the signal-to-noise ratio (SNR)
that can be represented the relative variance of the signal
and the noise. For the segments of the time series shown in
Fig. 3, the noise levels are estimated to be about 3.6� 0.6%
and 4.2� 0.5% in terms of variance. Thus, the presence of
noise has effects on the prediction results. The magnitudes
of the estimated noise levels seem to be quite reasonable
considering the fact that the measurements of air pollutant
concentration are influenced by a large number of meteo-
rological and human-induced factors.

Thus, our results can be considered as the example of
quite successful short-range forecast for the concentrations
of atmospheric pollutants. It is noteworthy that the non-
linear prediction method provides the satisfactory results
in the case, when the concentrations are sharply rising; at
least, all the tendencies to the rising were revealed by the
method. In addition, we have used the simplest approach
for the approximation of local model and more complicated
methodology can provide hopefully the better forecasts.

The non-linear model possesses some advantages over
explanatory models. Particularly, the errors due to param-
eterizations of sources and interactions, which are inherent
in explanatory models, are absent in the non-linear model.
Further, it is not necessary to estimate the characteristics
described in Sections 3 and 4.1 for every forecasting
procedure since they define certain dynamics of system.
The latter, in turn, depends on some meteorological and
human-induced factors, and if these factors are
unchangeable then the parameters (i.e. time lag and
dimension of attractor) needed to model the dynamics of
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Fig. 3. Original data (solid lines) and 24-h forecasts (dashed lines) for last
100 data points of (a) NO2 and (b) SO2 from 2003 at site 6 of Gdansk region,
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system are also unchangeable. Moreover, the calculations
of above-mentioned parameters take the most part of time,
whereas the time required for the forecasting procedure by
personal computer is a few minutes only. Finally, the non-
linear model can be considered as a good alternative of
conventional methods, especially for regions where deter-
ministic or statistical models cannot be used because of one
or another reasons.
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