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Abstract.  It has been carried out sensing and calculating probabilities and oscillator strengths of a 
number of radiative transitions in the spectra of heavy Rydberg atoms of alkaline elements on the basis 
of new relativistic model potential method in the framework of gauge-invariant perturbation theory and 
relativistic energy approach.. It has been shown that that a new approach provides a precise accounting 
exchange-correlation effects, including  effect of essentially non-Coulomb  grouping of Rydberg 
levels, pressure continuum. There are received precise data on energy and spectroscopic parameters 
energy, radiation width, amplitude transitions, the lifetime) for Rydberg atoms Rb, Cs, Fr, particularly, 
transitions nS½→n’P½,3/2 (n=5,6; n’=10-70), nP½,3.2→n’D3/2,

5/2 (n=5,6; n’=10-80) in the Rb, Cs 
spectra; for Rydberg Fr there are in most first calculated and predicted spectroscopic data on transition  
amplitude, lifetime of Rydberg states and transitions 7S½-nP½,3/2, 7P½,3.2-nD3/2,

5/2 (n=20-80). Data 
obtained can be used in carrying out new types of radiative quantum sensors and frequency standards.
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НОВИЙ РЕЛЯТИВІСТСЬКИЙ МЕТОД МОДЕЛЬНОГО ПОТЕНЦІАЛУ  
ВИЗНАЧЕННЯ ІМОВІРНОСТЕЙ РАДІАЦІЙНИХ ПЕРЕХОДІВ У СПЕКТРАХ 

ВАЖКИХ РІДБЕРГІВСЬКИХ АТОМНИХ СИСТЕМ 

В. Б. Терновський, О. В. Глушков, П. О. Заїчко, О. Ю. Хецеліус, Т. О. Флорко  

Анотація. Виконано розрахунок ймовірностей і сил осциляторів ряду радіаційних переходів 
в спектрах важких рідбергівських атомів лужних елементів на основі нового релятивістського 
методу модельного потенціалу в рамках калібрувально-інваріантної теорії збурень і реляти-
вістського енергетичного підходу. Показано, що підхід забезпечує досить ефективний ступінь 
урахування обмінно-кореляційних ефектів, у тому числі ефекту істотно некулонівського групу-
вання рідбергівських рівнів, тиску континууму і т.і. Отримано уточнені дані по енергетичним 
і спектроскопічним параметрам (енергії, радіаційні ширини, амплітуди переходів, час життя) 
для рідбергівських атомів Rb, Cs, Fr, зокрема, переходів nS1/2→n’P½,3/2 (n=5,6; n’=10-70), 
nP½,3.2→n’D3/2,

5/2 (n=5,6; n’=10-80) в спектрах Rb, Cs; для рідбергівського Fr розраховані і 
передбачені спектроскопічні дані по амплітудах переходів, часам життя рідбергівських станів і 
переходів 7S½-nP½,3/2, 7P½,3.2-nD3/2,

5/2 (n=20-80). Одержані дані можуть бути використані при 
побудові нових типів радіаційних квантових сенсорів та стандартів частоти.

Ключові слова: радіаційні переходи, важкі рідбергівські атоми, новий метод, квантові сенсори

НОВЫЙ РЕЛЯТИВИСТСКИЙ МЕТОД МОДЕЛЬНОГО ПОТЕНЦИАЛА  
ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ РАДИАЦИОННЫХ ПЕРЕХОДОВ В СПЕКТРАХ 

ТЯЖЕЛЫХ РИДБЕРГОВСКИХ АТОМНЫХ СИСТЕМ

В. Б. Терновский, А. В. Глушков, П. А. Заичко, О. Ю. Хецелиус, Т. А. Флорко

Аннотация. Выполнен расчет вероятностей и сил осцилляторов ряда радиационных пе-
реходов в спектрах тяжелых ридберговских атомов щелочных элементов  на  основе нового 
релятивистского метода модельного потенциала в рамках калибровочно-инвариантной теории 
возмущений и релятивистского энергетического подхода. Показано, что подход обеспечивает 
достаточно эффективный учет обменно-корреляционных эффектов, в том числе эффекта суще-
ственно некулоновского  группирования ридберговских уровней, давления континуума и т.д. 
Получены  уточненные данные по энергетическим и спектроскопическим параметрам (энергии, 
радиационные ширины, амплитуды переходов, время жизни) для ридберговских атомов Rb, Cs, 
Fr, в частности, переходы nS½→n’P½,3/2 (n=5,6; n’=10-70), nP½,3.2→n’D3/2,

5/2 (n=5,6; n’=10-80) 
в спектрах Rb, Cs; для ридбергского  Fr рассчитаны и предсказаны  спектроскопические данные 
по амплитудам переходов, временам жизни ридберговских состояний и переходов 7S½-nP½,3/2, 
7P½,3.2-nD3/2,

5/2 (n=20-80). Полученные данные могут быть использованы при создании новых 
типов радиационных квантовых сенсоров и стандартов частоты.

Ключевые слова: радиационные переходы, тяжелые ридберговские атомы, новый метод, 

1. Introduction
By far one of the very urgent and very chal-

lenging directions of modern quantum (atomic) 
optics and spectroscopy, sensors physics are cer-

tainly related  research on spectroscopy Rydberg 
atoms ( atoms that are found in highly excited 
states with large values   of the principal quantum 
number n >> 1). (see, for example [1-12]). The 
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great relevance of research energy and spectro-
scopic characteristics of Rydberg atoms, usually 
due to standard requirements in spectroscopic in-
formation of a number of applications and related 
physical sciences, which include sensors electron-
ics and quantum computing, atomic and molecu-
lar optics and spectroscopy, quantum electronics, 
laser physics, the construction of kinetic models 
of new laser schemes for short-range, physics and 
chemistry laboratory, astrophysical plasmas, as-
trophysics and astronomy (well-known facts that 
are found in interstellar clouds absorption lines 
between Rydberg states with n ~ 300-700) . The 
unique  properties of the Rydberg atoms are as-
sociated with too small ionization potentials, suf-
ficiently large size, big enough lifetime compared 
to conventional atomic states, finally, unprec-
edented for ordinary atoms sensitivity to external 
fields because of what these fields are too strong) 
led in recent years, more intensive research Ry-
dberg atoms, in particular, by new experimental 
methods of laser spectroscopy, magneto-optical 
traps, synchrotron radiation sources, beam-foil 
spectroscope, cryogenic equipment and so on. 
Accordingly, extensive studying led to a number 
of unique scientific discoveries, such as  Rydberg 
matter, getting the Bose condensate in pairs Ryd-
berg alkali atoms, fountains of cold atoms, etc.  At 
the same time, despite the presence of a consid-
erable number of theoretical methods in atomic  
spectroscopy (such as  standard method e Dirac-
Fock (DF), Hartree-Fock (HF),  relativistic HF 
(RHF) type, the perturbation theory (PT) versions 
with the DF or RHF “0”-th approximation, meth-
od of the  quantum defect, density functional the-
ory, empirical model potential (EMP) and pseu-
dopotential methods etc )  for atoms in a free state 
and  various versions of perturbation theory (PT) 
for the external field, quasi-classical and classi-
cal models etc., a level of description of the Ry-
dberg atoms is not sufficiently satisfactory espe-
cially  when it comes to heavy atoms. For heavy 
Rydberg atoms there is of a great importance a  
precise account of relativistic, and exchange-
correlation (XC) effects, and also of a significant 
effects for the non-Coulomb grouping levels in 
the Rydberg spectra (the effect of which is not 
considered within simplified hydrogen-like mod-
els) and pressure continuum, with the obligatory 
optimization of the relativistic orbitals basises. In 

this paper it has been carried out sensing and cal-
culating probabilities and oscillator strengths of 
a number of radiative transitions in the spectra of 
heavy Rydberg atoms of alkaline elements on the 
basis of new relativistic model potential method 
in the framework of gauge-invariant perturbation 
theory and relativistic energy approach.

2. New relativistic approach to heavy Rydberg 
systems

Let us describe in brief the important moment 
of our theoretical approach for the Rydberg atom-
ic systems.  As usually, the wave functions ze-
roth basis is found from the Dirac equation solu-
tion with self-consistent total potential. The bare 
Hamiltonian is as follows: 
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where ai,aj – the Dirac matrices, wij –the transition 
frequency.  

Within relativistic PT [3,4] we introduce the 
zeroth –order Hamiltonian as: 
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where )( iXC rV  – one-particle exchange-correla-
tion potential (see. below); )|( brU iMF  – a  self-
consistent mean-field potential (Mean Field; b - 
parameter potential, which is further determined  
within ab ibitio procedure), that potential interac-
tion “quasiparticles-core” in the case of atomic  
system consisting of closed electron shells and 
several external quasiparticles.For the Rydberg 
states we choose the potential )|( brU iMF  in the 
form of the Ivanova-Ivanov potential [5]: 

)|( brU iMF =2[1-exp(-br)(1+r)]/Zr+
+8[1-exp(-br)(1+0,6r+0,16r2+0,036r3)]/Zr       (3)

As a single-quasiparticle exchange-correlation 
potential (XC) we use the  generalised potential of 
the Kohn-Sham-Gunnarsson-Lundqvist type [3]:
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state, connected with the ground state by the radiation transition [7].  In the zeroth QED PT 

approximation we, as usually (c.f.[3]), use the one electron bare MP: 
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λQ is the Coulomb 

part of interaction, Br
λQ - the Breit part. The Cou-
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λQ  is expressed in terms of radial in-
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According to [6,7], a matrix element in (6b) is written as follows:   
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where ji are the entire single electron momentums, тi – their projections; Qul
Q

is the Coulomb 

part of interaction, Br
Q - the Breit part. The Coulomb part Qul

Q  is expressed in terms of radial 

integrals R , angular coefficients S  [2,5]: 
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there f is the large component of radial part of single electron state Dirac function; the sign «» 

means that in (10) the large radial component fi is to be changed by the small gi  one and the 

moment  li is to be changed by  1 ii ll~  for Dirac number æ1> 0 and li+1 for æi<0. The Breit part 

of Q is defined as a sum:   BrBrBrBr
11   ,,, QQQQ , where contribution of our interest is  as: 
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All calculations are performed using modified Superatom code developed by Ivanov et al [3,5,7]. 
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3. Results and conclusions
As the test of an approach in table 1  we pres-

ent the experimental and theoretical values (a.u.) 

for the reduced s dipole transition matrix elements 
for Fr: (experimental data – Exp; EF-RMP – our 
data; “corr”- corrected version with using empiri-
cal data; all data from Refs. [8-12]).

Table 1 
The reduced s dipole transition matrix elements for Fr (see text)

As the test of an approach in table 1  we present the experimental and theoretical values 

(a.u.) for the reduced s dipole transition matrix elements for Fr: (experimental data - Exp; EF-

RMP - our data; “corr”- corrected version with using empirical data; all data from Refs. [8-12]). 

Table 1.  

The reduced s dipole transition matrix elements for Fr (see text) 

Пер./Мет PT- 

DFSD 

PT- 

DFSD 

(corr) 

EMP PT- 

RHF 

(corr) 

PT- 

RHF 

DF EF-

RMP 

Exp. 

7p1/2-7s 4.256 - - 4.279 4.304 4.179 4.272 

4.274 

4.277 

8p1/2-7s 0.327 0.306 0.304 0.291 0.301 - 0.339  

9p1/2-7s 0.110 0.098 0.096 - - - 0.092  

10p1/2-7s - - - - - - 0.063  

7p3/2-7s 5.851 - - 5.894 5.927 5.791 5.891 5.898 

8p3/2-7s 0.934 0.909 0.908 0.924 - - 0.918 - 

9p3/2-7s 0.436 0.422 0.420 - - - 0.426 - 

10p3/2-7s - - - - - - 0.284 - 

7p1/2-8s 4.184 4.237 4.230 4.165 4.219 4.196 4.228 - 

8p1/2-8s 10.02 10.10 10.06 10.16 10.00  10.12 - 

9p1/2-8s 0.985 - 0.977 - - - 0.972 - 

10p1/2-8s - - - - - - 0.395 - 

7p3/2-8s 7.418 7.461 7.449 7.384 7.470 7.472 7.453 - 

8p3/2-8s 13.23 13.37 13.32 13.45 13.26  13.35 - 

9p3/2-8s 2.245 - 2.236 - - - 2.232 - 

10p3/2-8s - - - - - - 1.058 - 

7p1/2-9s 1.016 - 1.010 - - - 1.062 - 

8p1/2-9s 9.280 - 9.342 - - - 9.318 - 

9p1/2-9s 17.39 - 17.40 - - - 17.42 - 

10p1/2-9s - -  - - - 1.836 - 

7p3/2-9s 1.393 - 1.380 - - - 1.41 - 

8p3/2-9s 15.88 - 15.92 - - - 15.96 - 

9p3/2-9s 22.59 - 22.73 - - - 22.68 - 

10p3/2-9s - - - - - - 3.884 - 
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In Figure 1 we present a dependence of the 
calculated  reduced dipole  matrix elements of 
principal quantum number for Rydberg atom Rb: 
5P3/2-nD5/2 (n ~70). The available experimen-
tal data are listed as a circle; Theory: continuous 
line - our data,  dotted line- data by  Piotrowicz 
et within the quasi-classical Dyachkov-Pankra-
tov model[11]. In Figure 2 we present the same 
dependence for Rydberg atom Fr: 7P3/2→nD5/2, 
n=10-80 (our data). 

              

Figure 1: A dependence of the calculated  reduced 
dipole matrix elements of principal quantum 
number for Rydberg atom Rb: 5P3/2-nD5/2  
(n ~70). The available experimental data are listed 
as a circle; Theory: continuous line - our data,  
dotted line- data by  Piotrowicz et within the quasi-

classical Dyachkov-Pankratov model (see text).

Figure 2. A dependence of the calculated  reduced 
dipole  matrix elements of principal quantum num-
ber for Rydberg atom Fr: 7P3/2→nD5/2, n=10-80 

(our data).

The strict analysis of the data presented shows 
the great role of the relativistic  and inter electron 
exchange-correlation effects of the second and 
higher PT orders (the interelectron polarization 
interaction and mutual screening), as well as the 

effect of the non-Coulomb grouping levels in the 
Rydberg spectra. Finally, the detailed data about 
the radiative characteristics  of complex atoms 
and ions (including the studied type) is especially 
necessary for carrying out new types of the Carno 
atomic machines, radiative quantum sensors, fre-
quency standards etc.   
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NEW RELATIVISTIC MODEL POTENТIAL APPROACH TO SENSING RADIATIVE 
TRANSITIONS PROBABILITIES IN SPECTRA OF HEAVY RYDBERG ATOMIC 

SYSTEMS 
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Summary
We have presented an effective relativistic approach for sensing and calculating energy of levels, 

probabilities and oscillator strengths (transition amplitudes, lifetimes) of a number of radiative tran-
sitions in the spectra of heavy Rydberg atoms of alkaline elements. It represents a new version of 
the relativistic model potential method. The approach is based on the relativistic many-body gauge-
invariant perturbation theory with the improved Dirac-Kohn-Sham zeroth approximation and relativ-
istic energy approach (S-matrix adiabatic Gell-Mann and Low formalism). We have shown that that 
during computing the energy and spectroscopic characteristics of the multielectron Rydberg atomic 
systems a new approach provides a precise accounting exchange-correlation effects, including  effect 
of essentially non-Coulomb  grouping of Rydberg levels, pressure continuum. There are received 
precise data on energy and spectroscopic parameters energy, radiation width, amplitude transitions, 
the lifetime) for Rydberg atoms Rb, Cs, Fr, particularly, transitions nS½→n’P½,3/2 (n=5,6; n’=10-70), 
nP½,3.2→n’D3/2,

5/2 (n=5,6; n’=10-80) in the Rb, Cs spectra; for Rydberg Fr there are in most first 
calculated and predicted spectroscopic data on transition  amplitude, lifetime of Rydberg states and 
transitions 7S½-nP½,3/2, 7P½,3.2-nD3/2,

5/2 (n=20-80). Regarding the application of the obtained data 
it can be indicated on carrying out new types of radiative quantum sensors and frequency standards, 
quantum electronics and different quantum devices.

Keywords: radiative transitions, heavy Rydberg atoms, new  method, quantum sensors
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Реферат
Ми запропонували ефективний релятивістський підхід до детектування та розрахунку енер-

гій рівнів, ймовірностей і сил осциляторів (амплітуд переходів, часів життя) ряду радіаційних 
переходів в спектрах важких рідбергівських атомів лужних елементів. Він являє собою вер-
сію моделі релятивістської потенційного методу. Підхід заснований на релятивістській багато-
частинковій калібрувально-інваріантній теорії збурень з покращеним Дірак-Кона-Шемівським 
нульовим наближенням і релятивістському енергетичному формалізмі (S-матричний адіаба-
тичний формалізм Гелл-Манн і Лоу). Показано, що підхід забезпечує досить ефективний сту-
пінь урахування обмінно-кореляційних ефектів, у тому числі ефекту істотно некулонівського 
групування рідбергівських рівнів, тиску континууму і т.і. Отримано уточнені дані по енерге-
тичним і спектроскопічним параметрам (енергії, радіаційні ширини, амплітуди переходів, час 
життя) для рідбергівських атомів Rb, Cs, Fr, зокрема, переходів nS½→n’P½,

3/2 (n=5,6; n’=10-70), 
nP½,3.2→n’D3/2,

5/2 (n=5,6; n’=10-80) в спектрах Rb, Cs; для рідбергівського Fr розраховані і пе-
редбачені спектроскопічні дані по амплітудах переходів, часам життя рідбергівських станів і 
переходів 7S½-nP½,

3/2, 7P½,3.2-nD3/2,
5/2 (n=20-80). Стосовно  застосувань отриманих даних слід 

указати на можливості побудови нових типів  радіаційних квантових сенсорів і квантових стан-
дартів частоти, а також застосування в галузях квантової електроніки і фізики квантових при-
строїв. 
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