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Abstract. Work is devoted to the development of the theoretical foundations of the universal complex chaos-
geometric and quantum-dynamic approach that consistently includes a number of new quantum models and a
number of new or improved methods of analysis (correlation integral, fractal analysis, algorithms, average mutual
information, false nearest neighbors, Lyapunov exponents, surrogate data, non-linear prediction, spectral methods,
etc.) to solve problems quantitatively complete modeling and analysis of chaotic dynamics of nonlinear processes
in atomic and molecular systems in a uniform and alternating electromagnetic field and quantum generator, laser
systems and devices (including fibers, semiconductor lasers with feedback et al.). For considered class of systems
and devices there are theoretically studied scenarios of generating chaos, obtained complete quantitative data on
the chaos characteristics and different modes of operation.
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XAOTHYHA JIMHAMIKA HEJIHIAHUX TPOLECIB B ATOMHUX I
MOJIEKYJIAPHUX CHCTEMAX B EJEKTPOMATHITHOMY TIIOJI 1
HAHNIBITPOBITHUKOBHUX TA BOJIOKOHHO-JIAZEPHUX ITPUCTPOSAX:

HOBI NIAXO0AHU, OJHOMAHITHICTbD I KPACA XAOCY

I II. Ilpenenuysa, O. B. ['nywxkos, A. 1. Jlenix, B. B. Bysoaci, B. b. Tepnoscwvkuii, I1. O. 3aiuko

AHoTamifa. PoOora mnpucBsiYeHa BHKIAJEHHIO YHIBEPCAIBHOTO KOMIUIEKCHOTO XaoC-T€OMETPUYHOTO 1
KBaHTOBO-JUHAMIYHOTO MiAXO1Yy, IO BKJIIOYA€E HU3KY HOBHX KBaHTOBUX Mojejeil 1 HOBUX ab0 yJAOCKOHAJIEHUX
METOMIB aHami3y (KopensAliiHui iHTerpan, (pakTaJbHHUI aHaji3, aJrOPUTMH CEPEIHBOI B3aeMHOI iH(popMaIlii,
XUOHNX HaWONMXYMX CYCiZiB, MOKa3HUKM JIAMyHOBa, CyporaTHMX JaHHX, CIEKTPAIbHI METOAM TOLIO), ML
BUpIIIEHHS 3a/1a4 KUIbKICHOTO MOJEIIOBAHHS 1 aHANi3y XaOTHYHOI IWHAMIKM HEJIHIHHHX NpoLeciB B aTOMHO-
MOJICKYJIIPHUX CHCTEMax B OJHOPIAHOMY 1 3MIHHOMY €JIGKTPOMArHiTHOMY TIOJi 1 KBaHTOBO-T€HEPAaTOPHUX,
Ja3epHUX CHUCTeMaxX Ta mpuiaaax (y T.4., BOJIOKOHHUX, HANiBIPOBIAHUKOBHUX Ja3zepax i3 3BOPOTHUM 3B'SI3KOM i
T.i.). [ po3TIAHYTOTO KiIacy CHCTEM 1 NMPUCTPOIB TEOPETHYHO BUBUEHI CIeHApii TeHepamii xaocy, OTpUMaHi
KUTBKICHI IaHi IO XapaKTepUCTUKAM XaOTHIHOI THMHAMIKY 1 Pi3HUM pekuMaM (QYHKIiOHYBaHHS.

KawuoBi ciaoBa: xaoTuyHa JMHaMiKa, aTOMHI 1 MOJEKYJSIpPHI CHUCTEMH B €IEKTPOMAarHiTHOMY TOJIi,

HAIIBIPOBIIHUKOBI 1 BOJOKOHHI J1a3epH, Xa0C-T€OMETPUYHUI 1 KBAHTOBO-IUHAMIUYHUAN IMiIX0IU

XAOTHYECKAS JMHAMWKA HEJIMHEMHBIX ITPOIIECCOB B ATOMHBIX 1
MOJIEKYJISIPHBIX CUCTEMAX B QJIEKTPOMATHUTHOM IIOJIE N
TMOJIYIIPOBOTHUKOBBIX 1 BOJIOKOHHO-JTA3EPHBIX YCTPOMCTBAX: HOBBIE
noaxoJbl, EIMHOOBPA3UE U OYAPOBAHUE XAOCA

I II. Ilpenenuya, A. B. I'nywxos, A. U.Jlenux, B. B. Bysooicu, B. b. Teprnosckuu, I1. A. 3auuko

Annoramusi. Pabora mocCBslIeHa HW3JI0KEHUIO YHUBEPCAIBHOIO KOMIUIEKCHOTO Xa0C- T'€OMETPUYECKOro M
KBaHTOBO-IMHAMHYECKOTO IO/AX0/1a, KOTOPBIH BKIIOYACT psJ HOBBIX KBAHTOBBIX MOJENEH M pAN HOBBIX HIIH
YCOBEPIIEHCTBOBAHHBIX METOAOB aHaiHW3a (KOPPENSLUOHHBIM WHTErpai, (pPaKTaIbHBIH aHANIH3, alrOpPUTMBI
cpenHeil B3aMMHOIN MH(OpPMAINH, JIOKHBIX Ommkalmux cocenei, mokasarenu JIsAmyHOBa, CyppoOTaTHBIX JaHHBIX,
HEJIMHEWHBIH MPOTHO3, CHEKTPaIbHBIE METOABI U T.X.), AJS PEIICHUS 3a]ad KOJUIECTBEHHOTO MOJAEIHPOBAHUS U
aHaJIN3a XaOTHYECKON IMHAMMKH HEJMHEHHBIX MPOIECCOB B aTOMHO-MOJEKYJISPHBIX CHCTEMax B OJHOPOJHOM H
IIEPEMEHHOM 3JICKTPOMarHUTHOM II0JI€ M KBaHTOBO-TCHEPATOPHBIX, JIA3€PHBIX CHCTEMax M mpubopax (B T.d.,
BOJIOKOHHBIX, TOJYTTPOBOIHHKOBBIX JIazepax ¢ 00paTHO CBA3BIO U Ap.). [1Jis pacCMOTPEHHOro Kilacca ¢ CHCTEM H
YCTPOHCTB TEOPETHYECKH W3Y4YEHBl CIEHApUH TeHepaluy Xaoca, MOJy4eHBl KOJIMYECTBEHHBbIC MAaHHBIE II0
XapaKTepUCTHKAM XaOTHYECKOH TMHAMHUKHU U Pa3JIMYHBIM peXxuMaM (QYHKIIMOHUPOBAHHUS.

KuoueBble cjioBa: xaoTudeckas JUHAMUKA, AaTOMHBIE U MOJIEKYJISIPHbIE CUCTEMBI B 3JIEKTPOMarHUTHOM MOJIE,
MOJIyIIPOBOTHUKOBBIE U BOJOKOHHBIE Ja3ephl, Xa0C-T€OMETPHUUECKUI U KBAHTOBO-TUHAMUYECKHUH ITOIX OB
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1. Introduction

At present time one of the extremely important and
too complex areas of elements, systems and devices
physics and sensor electronics is study of regular and
chaotic dynamics dynamics of nonlinear processes in
the different classes of quantum, quantum-generating
systems and devices and quantum (atomic-molecular
systems in an external electromagnetic field) [1-18].
Naturally, this is caused by a very rapid development in
the last decade of so-called quantum instrument, in-
cluding creation of new types of quantum systems and
devices (laser diodes, chaotic quantum generators and
lasers monohydric masers, atomic clocks, quantum
Carnot machine with “radiation” working substance
Bose Condensate systems in pairs of alkali atoms, etc.).
For these systems and devices it is of a principle role an
important manifestation of the effect of chaos, all the
elements of chaotic dynamics. Chaotic fluctuations in
the dynamics of laser diodes deserve much attention
because of their potential for unprecedented application
of the technologies, secure communication, the
construction of the so-called chaotic lidar, optical
reflectometer, true random number generators and so
on. It is well known that the transition to chaos in
dissipative regime of functioning of NMR-maser
provides the construction based on a new type of
detector signals with unprecedented sensitivity
especially when approaching control parameter of the
system to the point of so-called doubling bifurcation,
and these detectors for weak signals unstable maser
systems can operate in a range 1-10°Hz.

It is worth to remind that dynamics of the cited
systems in external electromagnetic field has features of
the random, stochastic kind and its realization does not
require the specific conditions. The importance of
studying a phenomenon of stochas- ticity or quantum
chaos in dynamical systems is provided by a whole
number of technical applications, including a necessity
of understanding chaotic features in a work of different
electronic devices and systems. New field of
investigations of the quantum and other systems has
been provided by a great progress in a development of a
chaos theory methods [1-12]. In previous our papers [3-
5,13,14,19-21] we have given a review of new methods
and algorythms to analysis of different

systems of quantum physics, electronics and photonics.
In this paper we have used the nonlinear method of
chaos theory and the recurrence spectra formalism to
study quantum stochastic futures and chaotic elements
in dynamics of atomic systems in the external
electroomagnetic fields. In this paper we present our
new approaches to the universal quantum-dynamic and
chaos-geometric modelling and analysis of the chaotic
dynamics of nonlinear processes in atomic and
molecular systems in intense electromagnetic fields and
quan- tum-generator and laser systems and devices (in-
cluding single-modal laser with an absorbing cell, a
semiconductor laser coupled with feedback with delay,
the system of semiconductor quantum generators,
combined through a general cavity, fiber lasers). In
order to make modelling chaotic dynamics it has been
constructed improved complex system (with chaos-
geometric, neural-network, forecasting, etc. blocks) that
includes a set of new quantum-dynamic models and
partially improved non-linear analysis methods
including correlation (dimension D) integral, fractal
analysis, average mutual information, false nearest
neighbours, LE, KE power spectrum, surrogate data,
nonlinear prediction, predicted trajectories, neural
network methods etc. Very important feature of the
work is establishing universal character of chaotic dy-
namics in different systems and devices.

2. Universal chaos-geometric approach in analysis
of chaotic dynamics of the nonlinear processes in
systems and devices

As our approach has been presented earlier, here we
are limited only by the key moments. Let us formally
consider scalar measurements s(n) = s(tq + nDt) = s(n),
where tq is the start time, Dt is the time step, and is n
the number of the measurements. Further it is necessary
to reconstruct phase space using as well as possible in-
formation contained in the s(n). Such a reconstruction
results in a certain set of J-dimensional vectors y(n)
replacing the scalar measurements. Packard et al. [9]
introduced the method of using time-delay coordinates
to reconstruct the phase space of an observed
dynamical system. The direct use of the lagged
variables s(n + t), where t is some integer to be
determined, results in a
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coordinate system in which the structure of orbits in
phase space can be captured. Then using a collection of
time lags to create a vector in d dimensions,

y(n) = [s(n), s(n + 1), s(n+ 21), ..., s(n +(d-1)v)],
(1)

the required coordinates are provided. In a nonlinear
system, the s(n + jt) are some unknown nonlinear
combination of the actual physical variables that
comprise the source of the measurements. The
dimension d is called the embedding dimension, dg.
Example of the Lorenz attractor given by Abarbanel et
al. [8] is a good choice to illustrate the efficiency of the
method.

According to Mane and Takens [12], any time lag
will be acceptable is not terribly useful for extracting
physics from data. If t is chosen too small, then the
coordinates s(n + j t) and s(n + (j + I)t) are so close to
each other in numerical value that they cannot be
distinguished from each other. Similarly, if t is too
large, -then s(n +jt) ands(n + (j + 1) t) are completely
independent of each other in a statistical sense. Also, if
t is too small or too large, then the correlation
dimension of attractor can be under- or overestimated
respectively [3]. It is therefore necessary to choose
some intermediate (and more appropriate) position
between above cases. First approach is to compute the
linear autocorrelation function

L3 Is(m+8)-Sllstom) 3]

C,(8)=

% [s(m)—5T

m=

E:%is{m}

=1

where

and to look for that time lag where C,(d) first passes
through zero. This gives a good hint of choice for t at
that s(n + jt) and s(n + (j + I)t) are linearly independent.
However, a linear independence of two variables does
not mean that these variables are nonlinearly
independent since a nonlinear relationship can differs
from linear one. It is therefore preferably to utilize
approach with a nonlinear concept of independence,
e.g. the average mutual information. Briefly, the con-
cept of mutual information can be described as
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follows. Let there are two systems, A and B, with
measurements a; and b, The amount one learns in bits
about a measurement of a from measurement of by is
given by arguments of information theory [3,7]

Py(a,b,) .
Pa)b b)) )

3

Where the probability of observing a out of the set of
all A is Pp{a.), and the probability of finding 6 in a
measurement B is Pg(b.), and the joint probability of the
measurement of a and 6 is Ppg{a., b*. The mutual
information / of two measurements a and by is
symmetric and non-negative, and equals to zero if only
the systems are independent. The average mutual
information between any value a. from system A and by
from B is the average over all possible measurements of

Iae{a., b?),

! p(a,b,)= IOQ:{

[s()=) Pyla,b)l z(a,b,).

a.b

To place this definition to a context of obsvrva-
tions from a certain physical system, let us think of the
sets of measurements s(n) as the A and of the
measurements a time lag t later, s(n + t), as B set. The
average mutual information between observations at n
and n + tis then

(4)

I (1) = Z Py (ai,bi_)f,m (a,,b,) .

by

(5)

Now we have to decide what property of I(t) we
should select, in order to establish which among the
various values of t we should use in making the data
vectors y(n). One could remind that the autocorrelation
function and average mutual information can be
considered as analogues of the linear redundancy and
general redundancy, respectively, which was applied in
the test for nonlinearity. The general redundancies
detect all dependences in the time series, while the
linear redundancies are sensitive only to linear struc-
tures. Further, a possible nonlinear nature of process
resulting in the vibrations amplitude level variations
can be concluded.

The goal of the embedding dimension determination
is to reconstruct a Euclidean space RY large enough so
that the set of points d, can be unfolded without
ambiguity. In accordance with the embedding theorem,
the embedding dimension, dy, must be greater, or at
least equal, than a dimen
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sion of attractor, d,, i.e. de > da. However, two problems
arise with working in dimensions larger than really
required by the data and time-delay embedding
[1,7,13,19]. First, many of computations for extracting
interesting properties from the data require searches and
other operations in RY whose computational cost rises
exponentially with d. Second, but more significant from
the physical point of view, in the presence of noise or
other high dimensional contamination of the
observations, the extra dimensions are not populated by
dynamics, already captured by a smaller dimension, but
entirely by the contaminating signal. In too large an
embedding space one is unnecessarily spending time
working around aspects of a bad representation of the
observations which are solely filled with noise. It is
therefore necessary to determine the dimension da. There
are several standard approaches to reconstruct the
attractor dimension (see, e.g., [3,7-12]), but let us
consider in this study two methods only. The correlation
integral analysis is one of the widely used techniques to
investigate the signatures of chaos in a time series. The
analysis uses the correlation integral, C(r), to distinguish
between chaotic and stochastic systems. To compute the
correlation integral, the algorithm of Grassberger and
Procaccia [10] is the most commonly used approach.
According to this algorithm, the correlation integral is

o s

C(r)= "»"“m Z H—1y, -y, 1), (6)

(1=i<j=N)

where H is the Heaviside step function with H(u) = 1
for u > 0 and H(u) = 0 for u £ 0, r is the radius of
sphere centered on y; or y; and N is the

number of data measurements.If the time series is

characterized by an attractor, then the intearal C(r) is
{ =hm bgClr)
a= -

i logr

related to the radius r given by

where d i s correlation exponent that can be determined
as the slop of line in the coordinates log C(r) versus log
r by a least-squares fit of a straight line over a certain
range of r, called the scaling region.

If the correlation exponent attains saturation with an
increase in the embedding dimension, then the system
is generally considered to exhibit chaotic dynamics.
The saturation value of the cor

relation exponent is defined as the correlation di-
mension (d,) of the attractor. The method of surrogate
data [3,7-11] is an approach that makes use of the
substitute data generated in accordance to the
probabilistic structure underlying the original data.
This means that the surrogate data possess some of the
properties, such as the mean, the standard deviation,
the cumulative distribution function, the power
spectrum, etc., but are otherwise postulated as random,
generated according to a specific null hypothesis.
Here, the null hypothesis consists of a candidate linear
process, and the goal is to reject the hypothesis that the
original data have come from a linear stochastic
process. One reasonable statistics is obtained as
follows. If we denote Qorig. as the statistic com-

puted for the original time series and Qg for ith
surrogate series generated under the null hypothesis
and let mg and ss denote, respectively, the mean and
standard deviation of the distribution of Qs, then the
measure of significance S is given by

oo =, |
‘ s 2 cannot be considered
very significant, whereas an S value of-10 is highly
significant. To detect nonlinearity in the amplitude
level data, the one hundred realizations of surrogate
data sets were generated according to a null hypothesis
in accordance to the probabilistic structure underlying
the original data. Often, a significant difference in the
estimates of the correlation exponents, between the
original and surrogate data sets, can be observed. In the
case of the original data, a saturation of the correlation
exponent is observed after a certain embedding
dimension value (i.e., 6), whereas the correlation
exponents computed for the surrogate data sets
continue increasing with the increasing embedding
dimension. The high significance values of the statistic
indicate that the null hypothesis (the data arise from a
linear stochastic process) can be rejected and hence the
original data might have come from a nonlinear
process. It is worth consider another method for
determining deg that comes from asking the basic
question addressed in the embedding theorem: when
has one eliminated false crossing of the orbit with itself
which arose by virtue of having projected the attractor
into a too low dimensional space? By examining this
question in dimension one, then dimension
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two, etc. until there are no incorrect or false neighbours
remaining, one should be able to establish, from
geometrical consideration alone, a value for the
necessary embedding dimension. Advanced version is
presented in Ref. [3]

The LE are the dynamical invariants of the nonlinear
system. In a general case, the orbits of chaotic attractors
are unpredictable, but there is the limited predictability
of chaotic physical system, which is defined by the
global and local LE. A negative exponent indicates a
local average rate of contraction while a positive value
indicates a local average rate of expansion. In the chaos
theory, the spectrum of LE is considered a measure of
the effect of perturbing the initial conditions of a
dynamical system. In fact, if one manages to derive the
whole spectrum of the LE, other invariants of the
system, i.e. KE and attractor’s dimension can be found.
The KE, measures the average rate at which information
about the state is lost with time. An estimate of this
measure is the sum of the positive LE. The inverse of
the KE is equal to an average predictability. Estimate of
dimension of the attractor is provided by the Kaplan and
Yorke conjecture: i

Ay

d, = j++—,
1A, ]
J.

(7)

J+l
le” <0,

§
> 2,=0
such ==!thatandand

wherej is -]

the LE I, are taken in descending order. There are a few
approaches to computing the LE. One of them computes
the whole spectrum and is based on the Jacobi matrix of
system [3]. In the case where only observations are
given and the system function is unknown, the matrix
has to be estimated from the data. In this case, all the
suggested methods approximate the matrix by fitting a
local map to a sufficient number of nearby points. To
calculate the spectrum of the LE from the amplitude
level data, one could determine the time delay t and
embed the data in the four-dimensional space. In this
point it is very important to determine the Kaplan-
Yorke dimension and compare it with the correlation
dimension, defined by the Grassberger-Procaccia
algorithm. The estimations of the KE and average
predictability can further show a limit, up to which the
amplitude level data can be on average predicted. Table
1 reflects
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the main blocks of a the universal complete complex
chaos-geometric approach to chaotic dynamics in
systems and devices. The basic idea of constructing
model prediction of chaotic properties of complex
systems is the use of the traditional concept of a
compact geometric attractor, which evolve measurement
data, plus implementation neural network algorithms.
The meaning of the concept is in the doctrine of
evolution attractor in the phase space of the system and
in a sense the simulation (“guessing”) temporal
evolution.

It’s about the fact that the phase space of a system
orbit some continuously rolled on itself as a result of
dissipative forces and the nonlinear part of the
dynamics, so it is possible to find in the neighborhood
of any point of the orbit y (n) other points of the orbit
y'(n), r = 1,2, ..., Ng, arriving in the neighborhood of y
(n) in different time moments which differ of n. Of
course, then one can try to build different types of
interpolation functions that take into account the whole
neighborhood of the phase space, while explaining how
the neighborhood evolve from y (n) around all points
set near y(n + 1). In terms of the theory of neural
networks, the simulation of the evolution of the system
can be described by some generalized evolutionary
neural dynamic equations. Simulating further the
evolution of complex systems as appropriate neural
network evolution with elements of self-learning, self-
adaptability, etc., there is a significant opportunity to
improve the quality of prediction of the evolutionary
dynamics of modelling the attractor in a chaotic system.
Modelling attractor by some record in memory, neural
system evolutionary process, i.e. the transition from the
initial state to the (next) final state, can be represented
by a model of reconstruction of the full record on
distorted information, that is a model of associative
recognition. Domain of attraction of different attractors
are separated by separatrises or by certain surfaces in
the phase space, structure of which is quite complex.
However, it imitates the properties of the chaotic ob-
ject. The next step is to construct a parameterized
nonlinear function F (x, a), which transform y (n) to
y(n) B y(n + 1) = F(y(n), a), and use different, including
the neural network criteria for determining the
parameters a. As the functional form of displaying, one
may use, for example, polyno-
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[ Preliminarv study and assessment of the presence of chaos

1. Test Hottvod-Melben
K — | —chaos

2. Fourier decompositions, irregular nature of change - chaos

3. Spectral analysis, Energy spectra statistics,
the Wigner distribution, the spectrum of power,
"Spectral ngidity™

II. The geometry of the phase space. Fractal Geometry

4. Computation time delay ©
using autocorrelation function or mutual
mformation

5. Determining embedding dimension dr
bv the method of correlation dimension or algorithm of
false nearest neighboring points

6. Calculation multi-fractal spectra.
Wa elet analysis

III. Prediction

7. Computing global Lyvapynov dimensions %.,;
Kaplan-York dimension 4y, KE, average
predictability measure Pry,y

8. Determining the number of nearest neighbor
points NN for the best prediction results

9. Methods of nonlinear prediction. Neural network algorithm,
the algonthm specified trajectories, ..

Figure 1. Chaos and neural network-geometric approach to nonlinear analysis and forecast chaotic dynamics

processes in complex systems (devices).

mial basis functions. A measure of the quality of

the curve fit to the data, which is determined from
the condition, how exactly coincide y(k + 1) with
F(y(k), a) is a local deterministic error: e (k) =
y(k + 1)-F(y(k), a).If the mapping F (y, a) is local,
then for each neighbor to y(k) point, y"(k)

(r=1,2, ..., N) can be written as Sg)(;’c) =
y(r, k + 1)-F(y"(k), a), where y(r, £k + 1) is the
point in phase space, which evolves y (r, k). To
measure the quality of the curve fit to the data, the
local cost function has the form (in fact, the func-

tion value for the error):
'y J"l'-B

W(ek) = Za|sé”}(kj\zf2[y(m — (Y’

and the parameters, determined by minimizing W(e, ),
are dependent on parameter a. More formally, it is
possible to start neural network algorithm, especially in
terms of training an equivalent system of neural networks
with the reconstruction and forecasting neural system
state (correspondingly, correction of a). In Ref. [15] we
have presented the results of modelling and recognition
of complex patterns (trajectories). Taken as input noisy
soliton-like pulse f(t) = | Ao | > ch™ (bt), which im-
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posed by an additive noise of intensity D = 0.000

0. 0050, as well as a neural function f (t) =
1/[1 + exp(-0x)]. The procees of network: tratning and
ptayback signal was optimal at a certain level of noise
(D =0.0021); resulting in the PC experiments there has
been revealed the unique possibility of stochastic
resonance effect in the dynamical system with a noise

3. Chaos in dynamics of atomic systems in an
intense electromagnetic field

In ref. [18] it has been developed a new non-
perturbative quantum chaos-dynamic and geometric
approac h to mod el ing the chaotic dynamics of atomic
systems in homogeneous magnetic field, which is based
on the operator optimized perturbation theory and
finite-difference solution of the Schrodinger equation
for an atom in the field (in a cylindrical coordinate
system z||B;

¥ ——equp):
52 > o2 MmM?E
-62 —l-_:;+(2--M—2—4y2p2+ (8)
('?Tp PCP &z 2,

+i+Vc(}') +(£—7Ad) W(p,z) =0,

r Ry
where g=B/Bo, B =2.3505x10°T, V' (r) - potential
electron self-consistent field, including the Hartree
potential plus the Kohn-Sham exchange-correlation
potential  (other notations are standard). The
quantitative modeling of regular and chaotic dynamics,
computation power and spectral parameters for the
atoms of hydrogen, helium, neon in a uniform magnetic
field (g = 0.01-10000) showed that the system
generated quantum chaos, which is manifested in a very
complex and irregular dependences of state energies
upon the magnetic field amplitude, the presence of the
level intersections (eg., for Ne quasi-intersections in
dependence of the energy states | 0" > and |2pb > upon
the magnetic fie 1d amplitude at g = 158.7, | 2po > and |
In? > states- at g=40.2), in a photoionization cross
sections, power spectra etc. We have calculated and
carried our analysis of the photoionization spectrum,
power spectrum, the energies and widths of resonances,
the distribution of resonances in the H atom in the field
of
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5.96 T (the energy interval 20-80 cm-1). The ex-
perimental spectrum of hydrogen in the magnetic field
5.96 T is measured in [17]. According to our data, the
density of states in the middle of each channel Landau
resonance is 33 cm * for the average resonance width -
0.004 cm®, which is consistent with experimental data
Kleppner et al (1977): 0.004-0.006cm-'.The same data
have been also obtained for the Ba, namely, power
spectrum, resonance structure of the barium photoion-
ization spectrum. The speech is about a set of the low
resonances By3bknx (With widths 0.003-0.03cm?).

Further we present the results of modelling the ¢
haotic dynamic s of atomic systems in the crossed
electric F; and magnetic g fields, based on the nu-
merical solution of the Schrodinger equation:

H=1/2(p> +12] p*)+, 12+ (1/8)y* p* +(°)

+(1/2)p? + Fz-sin(ed) +V (r)
the operator perturbation theory and density func-
tional method. Further we use the denotations:
= Fly_“ 3 e=pmg23 (e ionization
energy of the free atom).We have carried out
modelling a chaotic dynamics for the Rydberg Li,
Rb (n~ 100, m = 0) atoms in a static magnetic (B
=4.5T) and oscillating electric field with frequen-
cy w=10°MHz (e=-0.03,v=0.32, g”’” in the range
35-50; f=0.000-0.070 ). Fig.2 shows the power
spectrum of Rb: a- in a magnetic field (f= 0, the
electric field is absent); (b) in a static magnetic
field and oscillating electric field /= 0.0035 (our
data).

Transition to chaos in system comprising inducing
nonlinear resonances by magnetic field , its strong
interaction and in excess of the critical field strength
merger with the emergence of global chaos.

4. Chaotic features of atomic systems dynamics
in a DC electric and electromagnetic fields

Here we present a new quantum-dynamic and
chaos-geometric approach to modeling the chaotic
dynamics of atomic systems in a dc electric and ac
electromagnetic fields, based on the theory
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of quasi-stationary quasienergy states, optimized
operator perturbation theory, method of model-
potential, density functional formalism, a complex
rotation coordinates algorithm method. The universal
chaos-geometric approach has been used for modeling
the chaos feature]. The new version of the operator
perturbation theory gtneralizes the original method
[19,20]. The m aster system of differential equations
for the electronic wave function of an atomic sytem
with N-electron core (described the Hellmann potential
with parameters A, b) in a strong uniform electric field
(of the intensity F) is as follows:

i o okl . - :
Slest ; Ses HET2+ (1= (NYAB(KYYZ) / t-F /4] frz =0
iy LIAEL 4 JEP24 Byt + B ) 0
@ g 9243,/ 8+ F /4] gy =
(10)
[m+1 . e
g7t g [E24 Bt F 4] g = 2gm .
o
4
3
2
¢ b‘u
0 _JL_ . L |L| J. 1
0 5 10

1

The width of the resonance is defined as:

ImE=1I2=n<¥, |HY, >

%, (12)

In the case of the alternating electromagnetic field
Hamiltonian atom is as follows:

(13)
The"rI" irerindic,0'cournn noe shnuldnsn the Floauet
. Y. (rt)>
theorem; then the eigen Floquet | E( 2 )“
quasienergies E are defeed as the eigen functions and
eigen values of the Floquet Hamiltonian HE = H - id,. In
the general form with using the method of complex
coordinates the problem reduces to the solution of sta-
tionary Schrodinger equation, which is as follows in the
model potential approximation:

(=1/2-V> +V_ (N + oL, + F2)Y.(r)= E¥Y,.(r)

o

H= % p 4V, (r)+zF, cos(ot)

(14)
5
4.
3
\:,-.
0 5 LA

Fig.2. The power spectrum of Rb: : a- in a magnetic field (f = 0, the electric field is absent); (b) in a static
magnetic field and oscillating electric field f = 0.0035 (our data).

To calculate the energy state E , separation constant
by one should solve the (6) with total H using the
quantization terms:

Ay~ 0att=> o, ox(B,E)/OE=0,

x(B,E)=lim [&" () +{g (0)/k3" Y™

(11)

i. e. to the stationary eigen value and eigen vectors task
for so me matrix A (with the consideration of several
Floquet zones): (A —E; B)\E; >=0. As a decomposition
basis, system of the Sturm functions of the operator
perturbation theory basis is used.

As illustration, below we present some results of
ourcalculations of ionization dynamics parameters for
Rydberg atoms Li, Rb, Yb (Li: ng=41-70;
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Rb: n=51-70; Yb: »=60-80) in a microwave field
(F=(12-3.2)x107 a.u.; w/2p=8.87, 36 HGz), in
particular, a dependence of the ionization proba-
bility P upon the F, interaction time “atom-field”,
which are in physically reasonable agreement
with experimental data by Munich group st Rb:
n>60, F=(1.2-3.2)x10° au., w/2p = 8.87GHz)
and Virginia group for Li: n,<42, w/2p = 15GHz
[22,25]. In Fig.3 we present our data on the de-
pendence of ionization probability for atoms Li
in the initially prepared states with /=0, m =0,
1n=63,67,69 on the field strength F

Pim

103 124 145 FE Bicm

Fig.3. Our data on the dependence of ionization
probability for atoms Li in the initially prepared
states with £=0, m=0, n=63,67,69 on the field strength
F: n=63 (), n=67 (/\), n=69 (3%).

In table 1 we listed calculated dependence of the
Rb ionization probability ( 1=0, m = 0, n=60-66 ) upon
the =2.8-3.1x10° a.u. [parameters: t = 327 x 2p/w;
frequency w/2p=36 GHz(l), 8.8 7GHz(I1)]

Table 1.
Dependence of the ionization probability P for Rb (
10=0, my=0, ny=60-66 ) on F,nq

Our calculations have shown that in dynamic s of
ionization Li, Rb, Yb Rydberg states in the microwave
field for main quantum numbers ng (ng ~ 63) there are
the local violations of probability smooth growth
associated with the complex Floquet spectrum, link
between the quasi-stationary states and a continuum,
the growing influence of multiphoton resonances. The
picture becomes by more complicated due to the single-
photonnear-resonance transitions  with quasi-
randomdetuning from resonance and quantum phase
shift due to scattering Rydberg electron on the atomic
core. It is in agreement with alternative comments in
[22,25]. Then we discovered a huge effect broadening
of resonances, their intensive interaction in the
spectrum of ytterbium heavy atoms in an external field,
and quantitatively detected spectral quantum chaos in
the distribution of the highly- lying stationary states,
Rydberg, autoionization, Stark resonances in Yb
spectrum (including resonances 4f %6s’np, 4f *6s°nf 3
n>20, J=2); Two potions sets of levels (> 30 conf. , 80
conf.) are studied. The average distance S, between the
levels is -0.03 eV, with accounting for the Rydberg
series states which converged to have a mean value of
190 eV, and taking into account the levels of Ry series
converging to excited states of Yb* this number can
reach 10° eV . Our analysis shows that the distribution
of S, corresponds to a chaotic Wigner distribution. In
Table. 2 there are listed our data and the available exp.
data [25] on energies and widths width (cm?) for
resonances 4f° [*F;,]6s°np[5/2],, nf[5/2], Yb in the
electric field of 80V/cm.

Table 2.
Resonances 4" [2F;,]6s°np[5/2],, nf[5/2], Yb in the
electric field 80V/cm: E,I' (cm-1).
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n Eexp E E Eexp E E
0 | =2exi0®: | Foaixiat | F284I0- F=3.1x102 20 | 714281 | 71429 | 0.98 | 71559.1 | 71561 | 1.27
<g(l) io(T) sco(ll) 10(IT)
Py = 30 | 716988 | 71697 | 362 | 717324 | 71734 | 26
S ' 0.18 0.21 3 | - 71741 | 265 | - 71763 | 2.15
63 | 0347 0,358 0,27 0,31
35 | - T8 | g | - 71770 | 1.83
65 | 0339 0,347 0.25 0.29 46 | - 71797 | 179 | - 71813 | 1.65
66 | 0,359 0,371 0,31 0,35

Further we have used the chaos-geometric approach to
estimate parameters of chaotic dynam-




ics for the Rydberg atoms Li, Rb, Yb in microwave
field: correlation dimension, LE I,(+~0.2,+~0.07), KE
(~ 0.3). We have constructed the quantitative diagram
of effects of the quantum fluctuations, stabilization,
destabilization, delocalization and performance of the
Kolmogo-rov-Arnold-Mozer  theorem in  atomic
dynamics. We have found that the regime of the chaotic
ionization for the Li, Rb in a microwave field at

a) , = con®, >0.88 (Li), wp>0.31 (Rb) switches to
dynamic stabilization one.

4. Chaos in dynamics of molecular systems in an
intense electromagnetic field

Here we present the chaotic dynamics analysis for
diatomic molecules in an intense electromagnetic field),
which, firstly, based on the numerical solution of the
time-dependent Schrodinger equation and realistic
Simons-Parr-Finlan model for the potential of diatomic
molecule U (x) (the quantum unit) and, secondly, the
universal approach to analysis of nonlinear chaotic
dynamics (chaos-geometric unit). The problem is
reduced to solving the Schrodinger equation:

io¥/ot=[H,+U(x)—d(x)E, &(t)cos(w,t] ¥
(15)

where Ey - the maximum field strength, e(t)=Eqcos(nt)

corresponds the pulse envelope. Molecule in the field

gets induced polarization and its high-frequency

component can be defined

as:

p&EP(1) = (%) W (t)|dy , [¥(D))coswtdt,(16)

where T— period of the external field, d -dipole
moment. Then there is simply determined the power
spectrum. As usually, to avoid the numerical noise
during the Fourier transformation, the attenuation
technique used, i.e. at t> t, p (t) is replaced by

p(t)cos?{m(t —t,)/[2(T — t,)]}, (&, <t<T )
with 7=1.6¢

Numerical calculations of the dynamics of the
diatomic molecule GeO in the linearly polarized field
(molecule and field parameters are as : /2=985.8 cm’,
y iQ =4.2cm-*, B = 0.48 cm’,

do = 3.28 D, M=13.1 a.e.m.; the radiation intensity 2.5-
25 GW/cm?, respectively: W = 3.39- 10.72cm ) have
been carried out. According to classical-dynamical
treating [26], these parameters correspond to chaotic
regime. The analysis shows that more than 200
vibrational-rotational molecular levels are involved into
a chaotic dynamics. Fig. 4 shows the theoretical time
dependence of polarization for GeO molecule in an in-
tense field in a chaotic regime.

~ (£}

2%
05

=03 +

0.75 1,10"%

Fig.4. Time dependence of polarization for GeO
molecule in intense field in a chaotic regime.

We at first have calculated the quantitative pa-
rameters for the GeO molecule chaotic dynamics in a
linearly polarized field of intensity 25 GW / cm?
namely: correlation dimension (2.73), the embedding
dimension (3), Kaplan-York dimension (2.51), LE (first
two LE are positive: + 0.146 + 0.0179), KE, etc.

5. Chaotic dynamics of non-linear processes in
semiconductor and erbium fiber laser devices

Here we present the results of the first complete
quantitative study of low- and high-dimensional
dynamics of the generation of chaos in semiconductor
GaAs / GaAlAs laser device with feedback with a delay
or disruption in which non-stability was provided by
changing the force feedback (current injection). Fischer
et al [27] have performed an experimental study of the
dynamics of the generation of chaos in semiconductor
GaAs / GaAlAs Hitachi HLP1400 laser; instability in
the system was caused by feedback from the delay at
the change of control parameters such as force feedback
m (current injection). Of course, depending on m in the
system there are arisen the

53



G. P. Prepelitsa, A. V. Glushkov, Ya. 1. Lepikh, V. V. Buyadzhi, V. B. Ternovsky, P. A. Zaichko

multi-stability of different classes; its modulation
period is approximately T,=2t/(2n+l), n=0, 1,2,... State
of the n = 0 is called as basic. With respect to
frequency modulation, other states are called as the
third harmonic, fifth harmonic and so on. Fig. 5 shows
the measured data for the time dependences of the
intensity for a semiconductor laser device with
feedback: a) Up figure - time series, which shows the
chaotic wandering between the ground state and the
state of the third harmonic;

b) Down figure - the time series for the system in a
state of global chaotic attractor.

The chaotization scenario in the system is from the
beginning in converting of regular classes into
individual chaotic states with the increasing the
parameter m by means of the period doubling bi-
furcation sequence. Then there is arisen a global
chaotic attractor after the merger of individual chaotic
attractors according to the more complicated scenario.
In Table. 3 there are listed the numerical data on the
correlation dimension d,, embedding dimension, based
on the algorithm of false nearest neighboring points
(dy) with percentage of the false neighbors (%)
calculated for different values of the delay time t
according to the analysis of two rows (two regimes: (1)
-Chaos and (I1)- Hyperchaos).

100 A —

50 4

-50

A

-100 . 1 " 1 . 1 " 1
100

Intensity / a.u.

— r - r - .
b) 3rd harmonic  5th 1st halrrnonic
-

50

-50

-100 . 1 " 1 N 1
512 5,14 5,16 5,18

Time / pys

5,20 5,22

Fig.5. Time series of intensity in GaAs / GaAlAs
Hitachi HLP1400 laser (experimental data by
Fischer et al (Marburg, Germany, 1994)/
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Table 3.

The correlation dimension d,, embedding

dimension, based on the algorithm of false nearest

neighboring points (dy) with percentage of the false

neighbors (%) calculated for different values of the
delay time t

Chaos (1) Hyperchaos (11)
Tl da | (dn) t d | (dn)
58 | 34 | 581 | 67 | 84 | 11(15)
6 | 22 | 405 | 49 | 74 | g(34)
8 | 22 | 4109 1o | T4 | g(34)

Table. 4 shows the results of a calculation of the LE,
the Kaplan-York attractor dimension, KE Ke.. For the
studied series there are positive and negative values of
LE The resulting Kaplan- York dimension in both cases
is very close to the correlation dimension, which is
determined by the algorithm by Grassberger and
Procaccia; Moreover, the Kaplan-York dimension is
smaller than the dimension of attachment, which
confirms the correctness of the choice of the latter.

Table 4.
Data on LE: 1;-14 in the B mopsiaky y6yBanus, d, -
Kaplan- York dimension, Ky - KE

Regime L u N3 4 K:
Chaos (I) | 0.151 (1)'0000 -0.188 | -0.067 | 1.8 | 0.15
Hyperchaos 0.517 | 0.192 -0.139 | -0.042 | 7.1 | 0.71
(IT)

Further we present the results of analysis and
prediction of the chaotic dynamics for temporal
dependence of the GaAs / GaAlAs (Hitachi HLP1400)
mode laser intensities. All results are obtained on the
basos of the universal chaos-geometric approach.
Calculation of assessing the reliability (success) and
efficiency of the forecasting model for the system
showed that chaos mode correlation coefficient (r)
between the actual and prognostic rows, ranked among
the neighbors (NN), is: r = 0.96 (NN = 90), r = 0.97
(NN = 220), r = 0.97 (NN = 250); as a result we can
talk about physically reasonable, quite successful
prediction of temporal evolution of intensity especially
for system in the low—dimensional (D ~ 2), chaos,
some worse for hyper chaos regime (D ~ 7).
Nonetheless, the implementation of the model in
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dicates the possibility of a radically new direction of
research in physics of dynamical systems and devices in
terms sufficiently reliable quantitative prediction of
their evolution in the future, at least in the short-term
version.

Further we present the original results of a complete
quantitative study of the chaos generation dynamics in
the one-ring erbium fiber laser (EDFL) using control
parameters: the modulation frequency f and dc bias
voltage V of the additional electro-optical modulator
(EOM). Feng et al. [28] experimentally observed
generation of chaos in the EDFL (laser parameters: the
output power 20.9 mV, wavelength 1550.190 nm) with
the EOM which is made from crystal LiNbO;. In the
first series of measurements (Exp.l) the DC bias voltage
is maintained at 10V, frequency modulation control
parameters was_/= 64-75MHz. Fig. 6a shows the
measured time dependence of the output voltage V,; of
the frequency modulation: A. f=75 MHz (one-period
state); B.*/=68MHz (double-period state); C/=64MHz
(chaotic state). In a second series of measurements the
modulation frequency is kept at 60 MHz, and its dc bias
voltage V was changed from 4 to 10V (fig.6b).
Theoretical examination shows that depending on the
values of/ Ulaser device is in turn in the one- period (f=
75 MHz, V= 10V or /= 60MHts, V = 4V), double-
period (f= 68MHz, V= 10V or/ = 60MHz , V= 6V),
chaotic (f= 64MHz, V= 10 V and/= 60MHz, V= 10V)
states. Using our universal chaos-geometric approach
we have calculated values of LE, correlation
dimension, embedding dimension, the Kaplan-York
dimension, the KE Kgy for two time series. The
relevant data are listed in the Table. 5

Table 5.

Results of calculation of the LE amplitude level:
1-14in descending order, d, - Kaplan- York
dimensipn, K,-KE

Row| A A A3 v de | Kenrr
| 0.168 0.0212 | -0.223 -0.323 | 2.85 0.19
1l 0.172 0.0215 | -0.220 -0.318 | 2.88 0.19

In general, our theoretical analysis shows that the
chaos in the EDFL device is generated via scenario of
intermittency by increasing the DC bias

voltage and period-doubling bifurcation sequence by
reducing the EOM modulation frequency.

7. Conclusions

So, we have carried out modelling chaotic dynamics
of nonlinear processes in different classes of systems
and devices using the same new uniform chaos-
geometric and quantum dynamical approach and
confirmed the universality and charm of chaotic
phenomena. It is carried out computing energy and
spectral parameters for hydrogen, helium, neon,
ytterbium in a uniform magnetic field (g~ 0.01-10000)
and found anti-crossings, complex power spectra with
chaotic elements (inducing nonlinear resonances, then,
their strong interaction, creating stochastic layers and
global stochasticity). It is carried out modelling of cha-
otic dynamics of the Li, Rb Rydberg states in (n =
115,125; m = 0) in a static magnetic field B = 4.5T and
oscillating electric field with frequency f= 102MHz )
and shown that stochastic changing, fragmentation,
extinction and again appearing of the peaks in power
spectrum is occurred. We have presented a new
approach to modelling the chaotic dynamics of
diatomic molecules in intense electromagnetic field,
which is , firstly, based on the numerical solution of the
time-dependent Schrodinger equation and realistic
model Simons-Parr-Finlan potential for diatomic mole-
cules (quantum unit) and, secondly, the universal
chaos-geometric  nonlinear analysis unit, which
includes the application of methods of correlational
integral, LE and spectrum strength etc to analysing time
series of populations, induced polarization. There are
determined quantitative parameters of the GeO
molecule chaotic dynamics in linear polarization filed
(intensity of 25 GW / c¢m?), including, correlation D
(2.73), embedding D, Kaplan-York D (2.51), LE (the
first two are positive, +, +), KE etc. We have carried
out quantitative low- and high-D chaos dynamics
generation studying in semiconductor GaAs/GaAlAs la-
ser device with delayed feedback with governing
(feedback strength, current injection). It is shown that
the firstly arising periodic states turns into individual
chaotic states and then global chaotic attractor with
scenario through period-doubling bifurcation, which
then significantly modified. It is numerically
investigated chaos dynamics gen
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eration in the erbium one-ring fibre laser (EDFL,
20.9mV strength, 1= 1550.190nm) with the control
parameters: the modulation frequency/and dc bias
voltage of the electro-optical modulator. It is shown that
in depending upon f Vvalues there are realized 1-period
(f= 75MHz, V = 10V and/ = 60MHz, V = 4V), 2-period
(f= 68 MHz, V = 10V or/= 60MHz, V = 6V), chaotic
(f= 64MHz, V = 10 V and/= 60MHz, V = 10V) regimes;

there are calculated LE,

correlation, embedding,

Kaplan-York dimensions, KE and theoretically shown
that chaos in the erbium fiber laser device is generated
via intermittency by increasing the DC bias voltage and
period-doubling bifurcation by reducing the frequency
modulation computers.
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