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ХАОТИЧНА ДИНАМІКА НЕЛІНІЙНИХ ПРОЦЕСІВ В АТОМНИХ І 
МОЛЕКУЛЯРНИХ СИСТЕМАХ В ЕЛЕКТРОМАГНІТНОМУ ПОЛІ І 
НАПІВПРОВІДНИКОВИХ ТА ВОЛОКОННО-ЛАЗЕРНИХ ПРИСТРОЯХ: 
НОВІ ПІДХОДИ, ОДНОМАНІТНІСТЬ І КРАСА ХАОСУ 

Г. П. Препелиця, О. В. Глушков, Я. І. Лепіх, В. В. Буяджі, В. Б. Терновсъкий, П. О. Заїчко 

Анотація. Робота присвячена викладенню універсального комплексного хаос-геометричного і 
квантово-динамічного підходу, що включає низку нових квантових моделей і нових або удосконалених 
методів аналізу (кореляційний інтеграл, фрактальний аналіз, алгоритми середньої взаємної інформації, 
хибних найближчих сусідів, показники Ляпунова, сурогатних даних, спектральні методи тощо), для 
вирішення задач кількісного моделювання і аналізу хаотичної динаміки нелінійних процесів в атомно-
молекулярних системах в однорідному і змінному електромагнітному полі і квантово-генераторних, 
лазерних системах та приладах (у т.ч., волоконних, напівпровідникових лазерах із зворотним зв'язком і 
т.і.). Для розглянутого класу систем і пристроїв теоретично вивчені сценарії генерації хаосу, отримані 
кількісні дані по характеристикам хаотичної динаміки і різним режимам функціонування. 

Ключові слова: хаотична динаміка, атомні і молекулярні системи в електромагнітному полі, 
напівпровідникові і волоконні лазери, хаос-геометричний і квантово-динамічний підходи 

ХАОТИЧЕСКАЯ ДИНАМИКА НЕЛИНЕЙНЫХ ПРОЦЕССОВ В АТОМНЫХ И 
МОЛЕКУЛЯРНЫХ СИСТЕМАХ В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ И 
ПОЛУПРОВОДНИКОВЫХ И ВОЛОКОННО-ЛАЗЕРНЫХ УСТРОЙСТВАХ: НОВЫЕ 
ПОДХОДЫ, ЕДИНООБРАЗИЕ И ОЧАРОВАНИЕ ХАОСА 

Г. П. Препелица, А. В. Глушков, Я. И.Лепих, В. В. Буяджи, В. Б. Терновский, П. А. Заичко 

Аннотация. Работа посвящена изложению универсального комплексного хаос- геометрического и 
квантово-динамического подхода, который включает ряд новых квантовых моделей и ряд новых или 
усовершенствованных методов анализа (корреляционный интеграл, фрактальный анализ, алгоритмы 
средней взаимной информации, ложных ближайших соседей, показатели Ляпунова, суррогатных данных, 
нелинейный прогноз, спектральные методы и т.д.), для решения задач количественного моделирования и 
анализа хаотической динамики нелинейных процессов в атомно-молекулярных системах в однородном и 
переменном электромагнитном поле и квантово-генераторных, лазерных системах и приборах (в т.ч., 
волоконных, полупроводниковых лазерах с обратной связью и др.). Для рассмотренного класса с систем и 
устройств теоретически изучены сценарии генерации хаоса, получены количественные данные по 
характеристикам хаотической динамики и различным режимам функционирования. 

Ключевые слова: хаотическая динамика, атомные и молекулярные системы в электромагнитном поле, 
полупроводниковые и волоконные лазеры, хаос-геометрический и квантово-динамический подходы 
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1. Introduction 

At present time one of the extremely important and 
too complex areas of elements, systems and devices 
physics and sensor electronics is study of regular and 
chaotic dynamics dynamics of nonlinear processes in 
the different classes of quantum, quantum-generating 
systems and devices and quantum (atomic-molecular 
systems in an external electromagnetic field) [1-18]. 
Naturally, this is caused by a very rapid development in 
the last decade of so-called quantum instrument, in-
cluding creation of new types of quantum systems and 
devices (laser diodes, chaotic quantum generators and 
lasers monohydric masers, atomic clocks, quantum 
Carnot machine with “radiation” working substance 
Bose Condensate systems in pairs of alkali atoms, etc.). 
For these systems and devices it is of a principle role an 
important manifestation of the effect of chaos, all the 
elements of chaotic dynamics. Chaotic fluctuations in 
the dynamics of laser diodes deserve much attention 
because of their potential for unprecedented application 
of the technologies, secure communication, the 
construction of the so-called chaotic lidar, optical 
reflectometer, true random number generators and so 
on. It is well known that the transition to chaos in 
dissipative regime of functioning of NMR-maser 
provides the construction based on a new type of 
detector signals with unprecedented sensitivity 
especially when approaching control parameter of the 
system to the point of so-called doubling bifurcation, 
and these detectors for weak signals unstable maser 
systems can operate in a range l-106Hz. 

It is worth to remind that dynamics of the cited 
systems in external electromagnetic field has features of 
the random, stochastic kind and its realization does not 
require the specific conditions. The importance of 
studying a phenomenon of stochas- ticity or quantum 
chaos in dynamical systems is provided by a whole 
number of technical applications, including a necessity 
of understanding chaotic features in a work of different 
electronic devices and systems. New field of 
investigations of the quantum and other systems has 
been provided by a great progress in a development of a 
chaos theory methods [1-12]. In previous our papers [3-
5,13,14,19-21] we have given a review of new methods 
and algorythms to analysis of different 

systems of quantum physics, electronics and photonics. 
In this paper we have used the nonlinear method of 
chaos theory and the recurrence spectra formalism to 
study quantum stochastic futures and chaotic elements 
in dynamics of atomic systems in the external 
electroomagnetic fields. In this paper we present our 
new approaches to the universal quantum-dynamic and 
chaos-geometric modelling and analysis of the chaotic 
dynamics of nonlinear processes in atomic and 
molecular systems in intense electromagnetic fields and 
quan- tum-generator and laser systems and devices (in-
cluding single-modal laser with an absorbing cell, a 
semiconductor laser coupled with feedback with delay, 
the system of semiconductor quantum generators, 
combined through a general cavity, fiber lasers). In 
order to make modelling chaotic dynamics it has been 
constructed improved complex system (with chaos-
geometric, neural-network, forecasting, etc. blocks) that 
includes a set of new quantum-dynamic models and 
partially improved non-linear analysis methods 
including correlation (dimension D) integral, fractal 
analysis, average mutual information, false nearest 
neighbours, LE, KE power spectrum, surrogate data, 
nonlinear prediction, predicted trajectories, neural 
network methods etc. Very important feature of the 
work is establishing universal character of chaotic dy-
namics in different systems and devices. 

2. Universal chaos-geometric approach in analysis 
of chaotic dynamics of the nonlinear processes in 
systems and devices 

As our approach has been presented earlier, here we 
are limited only by the key moments. Let us formally 
consider scalar measurements s(n) = s(tQ + nDt) = s(n), 
where tQ is the start time, Dt is the time step, and is n 
the number of the measurements. Further it is necessary 
to reconstruct phase space using as well as possible in-
formation contained in the s(n). Such a reconstruction 
results in a certain set of J-dimensional vectors y(n) 
replacing the scalar measurements. Packard et al. [9] 
introduced the method of using time-delay coordinates 
to reconstruct the phase space of an observed 
dynamical system. The direct use of the lagged 
variables s(n + t), where t is some integer to be 
determined, results in a 
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coordinate system in which the structure of orbits in 
phase space can be captured. Then using a collection of 
time lags to create a vector in d dimensions, 

 

the required coordinates are provided. In a nonlinear 
system, the s(n + jt) are some unknown nonlinear 
combination of the actual physical variables that 
comprise the source of the measurements. The 
dimension d is called the embedding dimension, dE. 
Example of the Lorenz attractor given by Abarbanel et 
al. [8] is a good choice to illustrate the efficiency of the 
method. 

According to Mane and Takens [12], any time lag 
will be acceptable is not terribly useful for extracting 
physics from data. If t is chosen too small, then the 
coordinates s(n + j t) and s(n + (j + l)t) are so close to 
each other in numerical value that they cannot be 
distinguished from each other. Similarly, if t is too 
large, -then s(n +jt) ands(n + (j + 1) t) are completely 
independent of each other in a statistical sense. Also, if 
t is too small or too large, then the correlation 
dimension of attractor can be under- or overestimated 
respectively [3]. It is therefore necessary to choose 
some intermediate (and more appropriate) position 
between above cases. First approach is to compute the 
linear autocorrelation function 

 

and to look for that time lag where CL(d) first passes 
through zero. This gives a good hint of choice for t at 
that s(n + jt) and s(n + (j + l)t) are linearly independent. 
However, a linear independence of two variables does 
not mean that these variables are nonlinearly 
independent since a nonlinear relationship can differs 
from linear one. It is therefore preferably to utilize 
approach with a nonlinear concept of independence, 
e.g. the average mutual information. Briefly, the con-
cept of mutual information can be described as 
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follows. Let there are two systems, A and B, with 
measurements ai and bk The amount one learns in bits 
about a measurement of a from measurement of bk is 
given by arguments of information theory [3,7] 

 Where the probability of observing a out of the set of 
all A is PA{a.), and the probability of finding 6 in a 
measurement В is PB(b.), and the joint probability of the 
measurement of a and 6 is PAB{a., b^. The mutual 
information / of two measurements a and bk is 
symmetric and non-negative, and equals to zero if only 
the systems are independent. The average mutual 
information between any value a. from system A and bk 
from В is the average over all possible measurements of 
IAB{a., b^), 

 

To place this definition to a context of obsvrva- 
tions from a certain physical system, let us think of the 
sets of measurements s(n) as the A and of the 
measurements a time lag t later, s(n + t), as В set. The 
average mutual information between observations at n 
and n + t is then 

 

Now we have to decide what property of I(t) we 
should select, in order to establish which among the 
various values of t we should use in making the data 
vectors y(n). One could remind that the autocorrelation 
function and average mutual information can be 
considered as analogues of the linear redundancy and 
general redundancy, respectively, which was applied in 
the test for nonlinearity. The general redundancies 
detect all dependences in the time series, while the 
linear redundancies are sensitive only to linear struc-
tures. Further, a possible nonlinear nature of process 
resulting in the vibrations amplitude level variations 
can be concluded. 

The goal of the embedding dimension determination 
is to reconstruct a Euclidean space Rd large enough so 
that the set of points dA can be unfolded without 
ambiguity. In accordance with the embedding theorem, 
the embedding dimension, dT, must be greater, or at 
least equal, than a dimen 



 

sion of attractor, dA, i.e. dE > dA. However, two problems 
arise with working in dimensions larger than really 
required by the data and time-delay embedding 
[1,7,13,19]. First, many of computations for extracting 
interesting properties from the data require searches and 
other operations in Rd whose computational cost rises 
exponentially with d. Second, but more significant from 
the physical point of view, in the presence of noise or 
other high dimensional contamination of the 
observations, the extra dimensions are not populated by 
dynamics, already captured by a smaller dimension, but 
entirely by the contaminating signal. In too large an 
embedding space one is unnecessarily spending time 
working around aspects of a bad representation of the 
observations which are solely filled with noise. It is 
therefore necessary to determine the dimension dA. There 
are several standard approaches to reconstruct the 
attractor dimension (see, e.g., [3,7-12]), but let us 
consider in this study two methods only. The correlation 
integral analysis is one of the widely used techniques to 
investigate the signatures of chaos in a time series. The 
analysis uses the correlation integral, C(r), to distinguish 
between chaotic and stochastic systems. To compute the 
correlation integral, the algorithm of Grassberger and 
Procaccia [10] is the most commonly used approach. 
According to this algorithm, the correlation integral is 

 

 

where H is the Heaviside step function with H(u) = 1 
for и > 0 and H(u) = 0 for и £ 0, r is the radius of 
sphere centered on yi or yj and N is the 

 
number of data measurements.If the time series is 
characterized by an attractor, then the integral C(r) is 

 related to the radius r given by 

where d і s correlation exponent that can be determined 
as the slop of line in the coordinates log C(r) versus log 
r by a least-squares fit of a straight line over a certain 
range of r, called the scaling region. 

If the correlation exponent attains saturation with an 
increase in the embedding dimension, then the system 
is generally considered to exhibit chaotic dynamics. 
The saturation value of the cor 

relation exponent is defined as the correlation di-
mension (d2) of the attractor. The method of surrogate 
data [3,7-11] is an approach that makes use of the 
substitute data generated in accordance to the 
probabilistic structure underlying the original data. 
This means that the surrogate data possess some of the 
properties, such as the mean, the standard deviation, 
the cumulative distribution function, the power 
spectrum, etc., but are otherwise postulated as random, 
generated according to a specific null hypothesis. 
Here, the null hypothesis consists of a candidate linear 
process, and the goal is to reject the hypothesis that the 
original data have come from a linear stochastic 
process. One reasonable statistics is obtained as 
follows. If we denote Qorig. as the statistic com- 

 

puted for the original time series and Qsi for ith 
surrogate series generated under the null hypothesis 
and let ms and ss denote, respectively, the mean and 
standard deviation of the distribution of Qs, then the 
measure of significance S is given by 
 

An S value of ~2 cannot be considered 
very significant, whereas an S value of-10 is highly 
significant. To detect nonlinearity in the amplitude 
level data, the one hundred realizations of surrogate 
data sets were generated according to a null hypothesis 
in accordance to the probabilistic structure underlying 
the original data. Often, a significant difference in the 
estimates of the correlation exponents, between the 
original and surrogate data sets, can be observed. In the 
case of the original data, a saturation of the correlation 
exponent is observed after a certain embedding 
dimension value (i.e., 6), whereas the correlation 
exponents computed for the surrogate data sets 
continue increasing with the increasing embedding 
dimension. The high significance values of the statistic 
indicate that the null hypothesis (the data arise from a 
linear stochastic process) can be rejected and hence the 
original data might have come from a nonlinear 
process. It is worth consider another method for 
determining dE that comes from asking the basic 
question addressed in the embedding theorem: when 
has one eliminated false crossing of the orbit with itself 
which arose by virtue of having projected the attractor 
into a too low dimensional space? By examining this 
question in dimension one, then dimension 
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two, etc. until there are no incorrect or false neighbours 
remaining, one should be able to establish, from 
geometrical consideration alone, a value for the 
necessary embedding dimension. Advanced version is 
presented in Ref. [3] 

The LE are the dynamical invariants of the nonlinear 
system. In a general case, the orbits of chaotic attractors 
are unpredictable, but there is the limited predictability 
of chaotic physical system, which is defined by the 
global and local LE. A negative exponent indicates a 
local average rate of contraction while a positive value 
indicates a local average rate of expansion. In the chaos 
theory, the spectrum of LE is considered a measure of 
the effect of perturbing the initial conditions of a 
dynamical system. In fact, if one manages to derive the 
whole spectrum of the LE, other invariants of the 
system, i.e. KE and attractor’s dimension can be found. 
The KE, measures the average rate at which information 
about the state is lost with time. An estimate of this 
measure is the sum of the positive LE. The inverse of 
the KE is equal to an average predictability. Estimate of 
dimension of the attractor is provided by the Kaplan and 
Yorke conjecture: 

(7) 

 

wherej is                      such       thatandand 

the LE la are taken in descending order. There are a few 
approaches to computing the LE. One of them computes 
the whole spectrum and is based on the Jacobi matrix of 
system [3]. In the case where only observations are 
given and the system function is unknown, the matrix 
has to be estimated from the data. In this case, all the 
suggested methods approximate the matrix by fitting a 
local map to a sufficient number of nearby points. To 
calculate the spectrum of the LE from the amplitude 
level data, one could determine the time delay t and 
embed the data in the four-dimensional space. In this 
point it is very important to determine the Kaplan-
Yorke dimension and compare it with the correlation 
dimension, defined by the Grassberger-Procaccia 
algorithm. The estimations of the KE and average 
predictability can further show a limit, up to which the 
amplitude level data can be on average predicted. Table 
1 reflects 
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the main blocks of a the universal complete complex 
chaos-geometric approach to chaotic dynamics in 
systems and devices. The basic idea of constructing 
model prediction of chaotic properties of complex 
systems is the use of the traditional concept of a 
compact geometric attractor, which evolve measurement 
data, plus implementation neural network algorithms. 
The meaning of the concept is in the doctrine of 
evolution attractor in the phase space of the system and 
in a sense the simulation (“guessing”) temporal 
evolution. 

It’s about the fact that the phase space of a system 
orbit some continuously rolled on itself as a result of 
dissipative forces and the nonlinear part of the 
dynamics, so it is possible to find in the neighborhood 
of any point of the orbit у (n) other points of the orbit 
yr(n), r = 1,2, ..., NB, arriving in the neighborhood of у 
(n) in different time moments which differ of n. Of 
course, then one can try to build different types of 
interpolation functions that take into account the whole 
neighborhood of the phase space, while explaining how 
the neighborhood evolve from у (n) around all points 
set near y(n + 1). In terms of the theory of neural 
networks, the simulation of the evolution of the system 
can be described by some generalized evolutionary 
neural dynamic equations. Simulating further the 
evolution of complex systems as appropriate neural 
network evolution with elements of self-learning, self-
adaptability, etc., there is a significant opportunity to 
improve the quality of prediction of the evolutionary 
dynamics of modelling the attractor in a chaotic system. 
Modelling attractor by some record in memory, neural 
system evolutionary process, i.e. the transition from the 
initial state to the (next) final state, can be represented 
by a model of reconstruction of the full record on 
distorted information, that is a model of associative 
recognition. Domain of attraction of different attractors 
are separated by separatrises or by certain surfaces in 
the phase space, structure of which is quite complex. 
However, it imitates the properties of the chaotic ob-
ject. The next step is to construct a parameterized 
nonlinear function F (x, a), which transform у (n) to 
y(n) в y(n + 1) = F(y(n), a), and use different, including 
the neural network criteria for determining the 
parameters a. As the functional form of displaying, one 
may use, for example, polyno- 



 

 

Figure 1. Chaos and neural network-geometric approach to nonlinear analysis and forecast chaotic dynamics 
processes in complex systems (devices). 

 

tion value for the error): 

 
and the parameters, determined by minimizing W(e, к), 
are dependent on parameter a. More formally, it is 
possible to start neural network algorithm, especially in 
terms of training an equivalent system of neural networks 
with the reconstruction and forecasting neural system 
state (correspondingly, correction of a). In Ref. [15] we 
have presented the results of modelling and recognition 
of complex patterns (trajectories). Taken as input noisy 
soliton-like pulse f(t) = │A0│2 ch-1 (bt), which im- 
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posed by an additive noise of intensity D = 0.000 
0. 0050, as well as a neural function f (t) = 
1/[1 + exp(-δx)]. The procees of network: tratning and 
ptayback signal was optimal at a certain level of noise 
(D = 0.0021); resulting in the PC experiments there has 
been revealed the unique possibility of stochastic 
resonance effect in the dynamical system with a noise 

3. Chaos in dynamics of atomic systems in an 
intense electromagnetic field 

In ref. [18] it has been developed a new non- 
perturbative quantum chaos-dynamic and geometric 
approac h to mod el ing the chaotic dynamics of atomic 
systems in homogeneous magnetic field, which is based 
on the operator optimized perturbation theory and 
finite-difference solution of the Schrodinger equation 
for an atom in the field (in a cylindrical coordinate 
system z||B; 

 

electron self-consistent field, including the Hartree 
potential plus the Kohn-Sham exchange-correlation 
potential (other notations are standard). The 
quantitative modeling of regular and chaotic dynamics, 
computation power and spectral parameters for the 
atoms of hydrogen, helium, neon in a uniform magnetic 
field (g = 0.01-10000) showed that the system 
generated quantum chaos, which is manifested in a very 
complex and irregular dependences of state energies 
upon the magnetic field amplitude, the presence of the 
level intersections (eg., for Ne quasi-intersections in 
dependence of the energy states | 0^ > and |2pb > upon 
the magnetic fie Id amplitude at g = 158.7, | 2po > and | 
In2 > states- at g=40.2), in a photoionization cross 
sections, power spectra etc. We have calculated and 
carried our analysis of the photoionization spectrum, 
power spectrum, the energies and widths of resonances, 
the distribution of resonances in the H atom in the field 
of 
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5.96 T (the energy interval 20-80 cm-1). The ex- 
perimental spectrum of hydrogen in the magnetic field 
5.96 T is measured in [17]. According to our data, the 
density of states in the middle of each channel Landau 
resonance is 33 cm 1 for the average resonance width - 
0.004 cm1, which is consistent with experimental data 
Kleppner et al (1977): 0.004-0.006cm_1.The same data 
have been also obtained for the Ba, namely, power 
spectrum, resonance structure of the barium photoion-
ization spectrum. The speech is about a set of the low 
resonances вузьких (with widths 0.003-0.03cm1). 

Further we present the results of modelling the с 
haotic dynamic s of atomic systems in the crossed 
electric F1 and magnetic g fields, based on the nu-
merical solution of the Schrodinger equation: 

 

Transition to chaos in system comprising inducing 
nonlinear resonances by magnetic field , its strong 
interaction and in excess of the critical field strength 
merger with the emergence of global chaos. 

4. Chaotic features of atomic systems dynamics 
in a DC electric and electromagnetic fields 

Here we present a new quantum-dynamic and 
chaos-geometric approach to modeling the chaotic 
dynamics of atomic systems in a dc electric and ac 
electromagnetic fields, based on the theory 



 

of quasi-stationary quasienergy states, optimized 
operator perturbation theory, method of model- 
potential, density functional formalism, a complex 
rotation coordinates algorithm method. The universal 
chaos-geometric approach has been used for modeling 
the chaos feature]. The new version of the operator 
perturbation theory gtneralizes the original method 
[19,20]. The m aster system of differential equations 
for the electronic wave function of an atomic sytem 
with N-electron core (described the Hellmann potential 
with parameters A, b) in a strong uniform electric field 
(of the intensity F) is as follows: 

 

 

 

The width of the resonance is defined as: 

In the case of the alternating electromagnetic field 
Hamiltonian atom is as follows: 

Thehrlh irnerindic,orcournn noe shnuldnsn the Floauet 
 
 theorem; then the eigen Floquet states and 
quasienergies E are defeed as the eigen functions and 
eigen values of the Floquet Hamiltonian HF = H - i∂t. In 
the general form with using the method of complex 
coordinates the problem reduces to the solution of sta-
tionary Schrodinger equation, which is as follows in the 
model potential approximation: 

 

 

Fig.2. The power spectrum of Rb: : a- in a magnetic field (f = 0, the electric field is absent); (b) in a static 
magnetic field and oscillating electric field f = 0.0035 (our data). 

To calculate the energy state E , separation constant 
b} one should solve the (6) with total H using the 
quantization terms: 

 

i. e. to the stationary eigen value and eigen vectors task 
for so me matrix A (with the consideration of several 
Floquet zones): (A –Ej B)\Ej >=0. As a decomposition 
basis, system of the Sturm functions of the operator 
perturbation theory basis is used. 

As illustration, below we present some results of 
ourcalculations of ionization dynamіcs parameters for 
Rydberg atoms Li, Rb, Yb (Li: nQ=41-70; 
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Our calculations have shown that in dynamic s of 
ionization Li, Rb, Yb Rydberg states іn the microwave 
field for main quantum numbers n0 (nQ ~ 63) there are 
the local violations of probability smooth growth 
associated with the complex Floquet spectrum, link 
between the quasi-stationary states and a continuum, 
the growing influence of multiphoton resonances. The 
picture becomes by more complicated due to the single-
photonnear-resonance transitions with quasi-
randomdetuning from resonance and quantum phase 
shift due to scattering Rydberg electron on the atomic 
core. It is in agreement with alternative comments in 
[22,25]. Then we discovered a huge effect broadening 
of resonances, their intensive interaction in the 
spectrum of ytterbium heavy atoms in an external field, 
and quantitatively detected spectral quantum chaos in 
the distribution of the highly- lying stationary states, 
Rydberg, autoionization, Stark resonances in Yb 
spectrum (including resonances 4f 36s2np, 4f 36s2nf з 
n>20, J=2 ); Two potions sets of levels (> 30 conf. , 80 
conf.) are studied. The average distance Sn between the 
levels is -0.03 eV, with accounting for the Rydberg 
series states which converged to have a mean value of 
190 eV1, and taking into account the levels of Ry series 
converging to excited states of Yb+ this number can 
reach 103 eV -1. Our analysis shows that the distribution 
of Sn corresponds to a chaotic Wigner distribution. In 
Table. 2 there are listed our data and the available exp. 
data [25] on energies and widths width (cm1) for 
resonances 4f3 [2F7/2]6s2np[5/2]2, nf[5/2]2 Yb in the 
electric field of 80V/cm. 

Table 2. 
Resonances 4f13 [2F7/2]6s2np[5/2]2, nf[5/2]2 Yb in the 

electric field 80V/cm: Е,Г (cm_1). 

In table 1 we listed calculated dependence of the 
Rb ionization probability ( 1=0, m = 0, n=60-66 ) upon 
the =2.8-3.1xl0-9  a.u. [parameters: t = 327 x 2p/w; 
frequency w/2p=36 GHz(I), 8.8 7GHz(II)] 

Table 1. 
Dependence of the ionization probability P for Rb ( 
10=0, m0=0, n0=60-66 ) on F,n0 

n F=2.8xl0-9; 
<B(I) 

F=3.1xia9; 
ю(Г) 

F=2.8xlO-
9;co(II) F=3.1xl0-9; 

ю(П) 

60 0,236 0,252 0,18 0,21 
63 0,347 0,358 0,27 0,31 

65 0,339 0,347 0,25 0,29 
66 0,359 0,371 0,31 0,35 
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Further we have used the chaos-geometric approach to 
estimate parameters of chaotic dynam- 

n E 
exp E E E 

exp E E 

20 71428.1 71429 0.98 71559.1 71561 1.27 

30 71698.8 71697 3.62 71732.4 71734 2.6 

34 - 71741 2.65 - 71763 2.15 

35 - 71748 1.82 - 71770 1.83 

46 - 71797 1.79 - 71813 1.65 



ics for the Rydberg atoms Li, Rb, Yb in microwave 
field: correlation dimension, LE la(+~0.2,+~0.07), KE 
(~ 0.3). We have constructed the quantitative diagram 
of effects of the quantum fluctuations, stabilization, 
destabilization, delocalization and performance of the 
Kolmogo-rov-Arnold-Mozer theorem in atomic 
dynamics. We have found that the regime of the chaotic 
ionization for the Li, Rb in a microwave field at 
a) o = con3

o >0.88 (Li), wQ>0.31 (Rb) switches to 
dynamic stabilization one. 

4. Chaos in dynamics of molecular systems in an 
intense electromagnetic field 

Here we present the chaotic dynamics analysis for 
diatomic molecules in an intense electromagnetic field), 
which, firstly, based on the numerical solution of the 
time-dependent Schrodinger equation and realistic 
Simons-Parr-Finlan model for the potential of diatomic 
molecule U (x) (the quantum unit) and, secondly, the 
universal approach to analysis of nonlinear chaotic 
dynamics (chaos-geometric unit). The problem is 
reduced to solving the Schrodinger equation: 

 where EM - the maximum field strength, e(t)=E0cos(nt) 
corresponds the pulse envelope. Molecule in the field 
gets induced polarization and its high-frequency 
component can be defined 
as: 

 

where T— period of the external field, d -dipole 
moment. Then there is simply determined the power 
spectrum. As usually, to avoid the numerical noise 
during the Fourier transformation, the attenuation 
technique used, i.e. at t> tp p (t) is replaced by 

 

Numerical calculations of the dynamics of the 
diatomic molecule GeO in the linearly polarized field 
(molecule and field parameters are as : ħΩ=985.8 cm1, 
y ħΩ =4.2cm_1, В = 0.48 cm1, 

d0 = 3.28 D, M=13.1 а.е.м.; the radiation intensity 2.5-
25 GW/cm2, respectively: W = 3.39- 10.72cm -1) have 
been carried out. According to classical-dynamical 
treating [26], these parameters correspond to chaotic 
regime. The analysis shows that more than 200 
vibrational-rotational molecular levels are involved into 
a chaotic dynamics. Fig. 4 shows the theoretical time 
dependence of polarization for GeO molecule in an in-
tense field in a chaotic regime. 

 

Fig.4. Time dependence of polarization for GeO 
molecule in intense field in a chaotic regime. 

We at first have calculated the quantitative pa-
rameters for the GeO molecule chaotic dynamics in a 
linearly polarized field of intensity 25 GW / cm2, 
namely: correlation dimension (2.73), the embedding 
dimension (3), Kaplan-York dimension (2.51), LE (first 
two LE are positive: + 0.146 + 0.0179), KE, etc. 

5. Chaotic dynamics of non-linear processes in 
semiconductor and erbium fiber laser devices 

Here we present the results of the first complete 
quantitative study of low- and high-dimensional 
dynamics of the generation of chaos in semiconductor 
GaAs / GaAlAs laser device with feedback with a delay 
or disruption in which non-stability was provided by 
changing the force feedback (current injection). Fischer 
et al [27] have performed an experimental study of the 
dynamics of the generation of chaos in semiconductor 
GaAs / GaAlAs Hitachi HLP1400 laser; instability in 
the system was caused by feedback from the delay at 
the change of control parameters such as force feedback 
m (current injection). Of course, depending on m in the 
system there are arisen the 
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multi-stability of different classes; its modulation 
period is approximately Tn=2t/(2n+l), n=0, 1,2,... State 
of the n = 0 is called as basic. With respect to 
frequency modulation, other states are called as the 
third harmonic, fifth harmonic and so on. Fig. 5 shows 
the measured data for the time dependences of the 
intensity for a semiconductor laser device with 
feedback: a) Up figure - time series, which shows the 
chaotic wandering between the ground state and the 
state of the third harmonic; 
b) Down figure - the time series for the system in a 
state of global chaotic attractor. 

The chaotization scenario in the system is from the 
beginning in converting of regular classes into 
individual chaotic states with the increasing the 
parameter m by means of the period doubling bi-
furcation sequence. Then there is arisen a global 
chaotic attractor after the merger of individual chaotic 
attractors according to the more complicated scenario. 
In Table. 3 there are listed the numerical data on the 
correlation dimension d2, embedding dimension, based 
on the algorithm of false nearest neighboring points 
(dN) with percentage of the false neighbors (%) 
calculated for different values of the delay time t 
according to the analysis of two rows (two regimes: (I) 
-Chaos and (II)- Hyperchaos). 

 

Fig.5. Time series of intensity in GaAs / GaAlAs 
Hitachi HLP1400 laser (experimental data by 
Fischer et al (Marburg, Germany, 1994)/ 
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Table 3. 
The correlation dimension d2, embedding 

dimension, based on the algorithm of false nearest 
neighboring points (dN) with percentage of the false 
neighbors (%) calculated for different values of the 
delay time t 

Chaos (I) Hyperchaos (II) 

τ d2 (dN) τ d2 (dN) 
58 3.4 5(8.1) 67 8.4 11(15) 

6 2.2 4(1.05) 10 7.4 8 (3.4) 

8 2.2 4(1.05) 12 7.4 8 (3.4) 

Table. 4 shows the results of a calculation of the LE, 
the Kaplan-York attractor dimension, KE Kentr. For the 
studied series there are positive and negative values of 
LE The resulting Kaplan- York dimension in both cases 
is very close to the correlation dimension, which is 
determined by the algorithm by Grassberger and 
Procaccia; Moreover, the Kaplan-York dimension is 
smaller than the dimension of attachment, which 
confirms the correctness of the choice of the latter. 

Table 4. 
Data on LE: 11-14 in the в порядку убування, dL - 
Kaplan- York dimension, Kentr - KE 

Regime L u ^3 
 

4 К , 
entr 

Chaos (I) 0.151 0.0000
1 -0.188 -0.067 1.8 0.15 

Hyperchaos 
(П) 

0.517 0.192 -0.139 -0.042 7.1 0.71 

Further we present the results of analysis and 
prediction of the chaotic dynamics for temporal 
dependence of the GaAs / GaAlAs (Hitachi HLP1400) 
mode laser intensities. All results are obtained on the 
basos of the universal chaos-geometric approach. 
Calculation of assessing the reliability (success) and 
efficiency of the forecasting model for the system 
showed that chaos mode correlation coefficient (r) 
between the actual and prognostic rows, ranked among 
the neighbors (NN), is: r = 0.96 (NN = 90), r = 0.97 
(NN = 220), r = 0.97 (NN = 250); as a result we can 
talk about physically reasonable, quite successful 
prediction of temporal evolution of intensity especially 
for system in the low—dimensional (D ~ 2), chaos, 
some worse for hyper chaos regime (D ~ 7). 
Nonetheless, the implementation of the model in 
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dicates the possibility of a radically new direction of 
research in physics of dynamical systems and devices in 
terms sufficiently reliable quantitative prediction of 
their evolution in the future, at least in the short-term 
version. 

Further we present the original results of a complete 
quantitative study of the chaos generation dynamics in 
the one-ring erbium fiber laser (EDFL) using control 
parameters: the modulation frequency f and dc bias 
voltage V of the additional electro-optical modulator 
(ЕОМ). Feng et al. [28] experimentally observed 
generation of chaos in the EDFL (laser parameters: the 
output power 20.9 mV, wavelength 1550.190 nm) with 
the ЕОМ which is made from crystal LiNb03. In the 
first series of measurements (Exp.l) the DC bias voltage 
is maintained at 10V, frequency modulation control 
parameters was_/= 64-75MHz. Fig. 6a shows the 
measured time dependence of the output voltage Vout of 
the frequency modulation: A. f=75 MHz (one-period 
state); B.^/=68MHz (double-period state); C/=64MHz 
(chaotic state). In a second series of measurements the 
modulation frequency is kept at 60 MHz, and its dc bias 
voltage V was changed from 4 to 10V (fig.6b). 
Theoretical examination shows that depending on the 
values of/ Ulaser device is in turn in the one- period (f= 
75 MHz, V= 10V or /= 60MHts, V = 4V), double-
period (f= 68MHz, V= 10V or/ = 60MHz , V= 6V), 
chaotic (f= 64MHz, V= 10 V and/= 60MHz, V= 10V) 
states. Using our universal chaos-geometric approach 
we have calculated values of LE, correlation 
dimension, embedding dimension, the Kaplan-York 
dimension, the KE Кentr for two time series. The 
relevant data are listed in the Table. 5 

Table 5. 
Results of calculation of the LE amplitude level: 

11-14 in descending order, dL - Kaplan- York 
dimension, K 4 - KE 

' entr 

Row Λ1 Λ2 Λ3 Λ4 dL Kentr 

I 0.168 0.0212 -0.223 -0.323 2.85 0.19 

II 0.172 0.0215 -0.220 -0.318 2.88 0.19 

In general, our theoretical analysis shows that the 
chaos in the EDFL device is generated via scenario of 
intermittency by increasing the DC bias 

voltage and period-doubling bifurcation sequence by 
reducing the ЕОМ modulation frequency. 

7. Conclusions 

So, we have carried out modelling chaotic dynamics 
of nonlinear processes in different classes of systems 
and devices using the same new uniform chaos-
geometric and quantum dynamical approach and 
confirmed the universality and charm of chaotic 
phenomena. It is carried out computing energy and 
spectral parameters for hydrogen, helium, neon, 
ytterbium in a uniform magnetic field (g~ 0.01-10000) 
and found anti-crossings, complex power spectra with 
chaotic elements (inducing nonlinear resonances, then, 
their strong interaction, creating stochastic layers and 
global stochasticity). It is carried out modelling of cha-
otic dynamics of the Li, Rb Rydberg states in (n = 
115,125; m = 0) in a static magnetic field В = 4.5T and 
oscillating electric field with frequency f= 102MHz ) 
and shown that stochastic changing, fragmentation, 
extinction and again appearing of the peaks in power 
spectrum is occurred. We have presented a new 
approach to modelling the chaotic dynamics of 
diatomic molecules in intense electromagnetic field, 
which is , firstly, based on the numerical solution of the 
time-dependent Schrodinger equation and realistic 
model Simons-Parr-Finlan potential for diatomic mole-
cules (quantum unit) and, secondly, the universal 
chaos-geometric nonlinear analysis unit, which 
includes the application of methods of correlational 
integral, LE and spectrum strength etc to analysing time 
series of populations, induced polarization. There are 
determined quantitative parameters of the GeO 
molecule chaotic dynamics in linear polarization filed 
(intensity of 25 GW / cm2), including, correlation D 
(2.73), embedding D, Kaplan-York D (2.51), LE (the 
first two are positive, +, +), KE etc. We have carried 
out quantitative low- and high-D chaos dynamics 
generation studying in semiconductor GaAs/GaAlAs la-
ser device with delayed feedback with governing 
(feedback strength, current injection). It is shown that 
the firstly arising periodic states turns into individual 
chaotic states and then global chaotic attractor with 
scenario through period-doubling bifurcation, which 
then significantly modified. It is numerically 
investigated chaos dynamics gen 
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eration in the erbium one-ring fibre laser (EDFL, 
20.9mV strength, 1= 1550.190nm) with the control 
parameters: the modulation frequency/and dc bias 
voltage of the electro-optical modulator. It is shown that 
in depending upon f Vvalues there are realized 1-period 
(f= 75MHz, V = 10V and/ = 60MHz, V = 4V), 2-period 
(f= 68 MHz, V = 10V or/= 60MHz, V = 6V), chaotic 
(f= 64MHz, V = 10 V and/= 60MHz, V = 10V) regimes; 
there are calculated LE, correlation, embedding, 
Kaplan-York dimensions, KE and theoretically shown 
that chaos in the erbium fiber laser device is generated 
via intermittency by increasing the DC bias voltage and 
period-doubling bifurcation by reducing the frequency 
modulation computers. 
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