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1. Introduction

In this work nonlinear simulation and forecasting chaotic evolutionary dy-
namics of complex systems are carried out using the concept of compact geomet-
ric attractors . We are developing a new approach to analyze complex system
dynamics based on the concept of geometric attractors, chaos theory methods
and algorithms for quantum neural network simulation. This work develops our
studies, presented in [1-12].

The basic idea of the construction of our approach to prediction of chaotic
processes in complex systems is in the use of the traditional concept of a compact
geometric attractor in which evolves the measurement data, plus the implemen-
tation of neural network algorithms. The existing so far in the theory of chaos
prediction models are based on the concept of an attractor, and are described in
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a number of papers (e.g. [1,13-20]). From a mathematical point of view, it is a
fact that in the phase space of the system an orbit continuously rolled on itself
due to the action of dissipative forces and the nonlinear part of the dynamics,
so it is possible to stay in the neighborhood of any point of the orbit y (n) other
points of the orbit y"(n),r = 1,2, ..., Ng, which come in the neighborhood y (n)
in a completely different times than n. Of course, then one could try to build
different types of interpolation functions that take into account all the neighbor-
hoods of the phase space and at the same time explain how the neighborhood
evolve from y (n) to a whole family of points about y (n+1). Use of the informa-
tion about the phase space in the simulation of the evolution of some physical
(geophysical etc.) process in time can be regarded as a fundamental element in
the simulation of random processes.

In terms of the modern theory of neural systems, and neuro-informatics (e.g.
[1]), the process of modelling the evolution of the system can be generalized to de-
scribe some evolutionary dynamic neuro-equations (miemo-dynamic equations).
Imitating the further evolution of a complex system as the evolution of a neu-
ral network with the corresponding elements of the self-study, self- adaptation,
etc., it becomes possible to significantly improve the prediction of evolutionary
dynamics of a chaotic system. Considering the neural network with a certain
number of neurons, as usual, we can introduce the operators S;; synaptic neu-
ron to neuron u; uj, while the corresponding synaptic matrix is reduced to a
numerical matrix strength of synaptic connections: W = w;;. The operator is
described by the standard activation neuro-equation determining the evolution

of a neural network in time:
N
s; = szgn(z w;;s; — 6;), (1)
j=1

where 1 <7 < N.

From the point of view of the theory of chaotic dynamical systems, the state
of the neuron (the chaos-geometric interpretation of the forces of synaptic inter-
actions, etc.) can be represented by currents in the phase space of the system
and its the topological structure is obviously determined by the number and
position of attractors. To determine the asymptotic behavior of the system it
becomes crucial a information aspect of the problem, namely, the fact of being
the initial state to the basin of attraction of a particular attractor.

Modelling each physical attractor by a record in memory, the process of the
evolution of neural network, transition from the initial state to the (following)
the final state is a model for the reconstruction of the full record of distorted
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information, or an associative model of pattern recognition is implemented. The
domain of attraction of attractors are separated by separatrices or certain sur-
faces in the phase space. Their structure, of course, is quite complex, but mimics
the chaotic properties of the studied object. Then, as usual, the next step is a nat-
ural construction parameterized nonlinear function F (x, a), which transforms:
y(n) —» y(n+1) = F(y(n,a)),and then to use the different ( including neural
network) criteria for determining the parameters a (see below). The easiest way
to implement this program is in considering the original local neighborhood,
enter the model(s) of the process occurring in the neighborhood, at the neigh-
borhood and by combining together these local models, designing on a global

nonlinear model. The latter describes most of the structure of the attractor.

Although, according to a classical theorem by Kolmogorov-Arnold -Moser,
the dynamics evolves in a multidimensional space, the size and the structure of
which is predetermined by the initial conditions, this, however, does not indi-
cate a functional choice of model elements in full compliance with the source of
random data. One of the most common forms of the local model is the model of
the Schreiber type [14] (see also [1,15-19]).

Nonlinear modelling of chaotic processes can be based on the concept of a
compact geometric attractor, which evolve with measurements. Since the orbit
is continually folded back on itself by the dissipative forces and the non-linear
part of the dynamics, some orbit points y"(k),r = 1,2,..., Ng can be found
in the neighbourhood of any orbit point y(k), at that the points y” (k) arrive
in the neighbourhood of y(k) at quite different times than k. Then one could
build the different types of interpolation functions that take into account all the
neighborhoods of the phase space, and explain how these neighborhoods evolve
from y(n) to a whole family of points about y(n + 1). Use of the information
about the phase space in modelling the evolution of the physical process in time

can be regarded as a major innovation in the modelling of chaotic processes.

This concept can be achieved by constructing a parameterized nonlinear func-
tion F(z,a), which transform y(n) to y(n + 1) = F(y(n),a), and then using
different criteria for determining the parameters a. Further, since there is the
notion of local neighborhoods, one could create a model of the process occur-
ring in the neighborhood, at the neighborhood and by combining together these
local models to construct a global nonlinear model that describes most of the
structure of the attractor.
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As shown Schreiber [14], the most common form of the local model is very

simple:

s(n+ An) —a(()")—i—Za (n—0G -1 (2)

where An - the time period for which a forecast .

The coefficients a( )

, may be determined by a least-squares procedure, in-
volving only points s(k) within a small neighbourhood around the reference
point. Thus, the coefficients will vary throughout phase space. The fit procedure
amounts to solving (d4 + 1) linear equations for the (d4 + 1) unknowns. When
fitting the parameters a, several problems are encountered that seem purely tech-
nical in the first place but are related to the nonlinear properties of the system.
If the system is low-dimensional, the data that can be used for fitting will locally
not span all the available dimensions but only a subspace, typically. Therefore,
the linear system of equations to be solved for the fit will be ill conditioned.
However, in the presence of noise the equations are not formally ill-conditioned
but still the part of the solution that relates the noise directions to the future
point is meaningless .Other modelling techniques are described, for example, in
[3,10, 17-20].

Assume the functional form of the display is selected, wherein the polynomials
used or other basic functions. Now, we define a characteristic which is a measure
of the quality of the curve fit to the data and determines how accurately match
y(k + 1) with F(y(k),a), calling it by a local deterministic error:

ep(k) =y(k+1) = F(y(k) a).

The cost function for this error is called W(e). If the mapping F(y,a),
constructed by us, is local, then one has for each adjacent to y(k) point,
y(r)(k)(r = 17 27 ey NB))

eP (k) = y(rk+1) — F(y"(k),a),

where y(r, k + 1) - a point in the phase space which evolves y(r, k). To measure

the quality of the curve fit to the data, the local cost function is given by

Zr 1 Eg) (k) ‘
SN2 [y (k) — (y(r, k)

and the parameters identified by minimizing W (e, k), will depend on a.

Wi(e, k)=
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Furthermore, formally the neural network algorithm is launched, in particu-
lar, in order to make training the neural network system equivalent to the re-
construction and interim forecast the state of the neural network (respectively,
adjusting the values of the coefficients). The starting point is a formal knowledge
of the time series of the main dynamic parameters of a chaotic system, and then
to identify the state vector of the matrix of the synaptic interactions w;; etc.
Of course, the main difficulty here lies in the implementation of the process of
learning neural network to simulate the complete process of change in the topo-
logical structure of the phase space of the system and use the output results of
the neural network to adjust the coefficients of the function display.

Further we consider implementation of the quantum neural networks algo-
rithm into general scheme of studying chaotic dynamics. The basic aspects of
theory of the photon echo based neural networks are stated previously (see, for
example, [21]). So here we mention only the essential elements. Photon echo is a
nonlinear optical effect, in fact this is the phenomenon of the four wave interac-
tion in a nonlinear medium with a time delay between the laser pulses. We have
used a software package for numerical modeling of the dynamics of the photon
echo neural network, which imitates evolutionary dynamics of the complex sys-
tem. It has the following key features: multi-layering, possibility of introducing
training, feedback and controlled noise. There are possible the different variants
of the connections matrix determination and binary or continuous sigmoid re-
sponse (and so on) of the model neurons. In order to imitate a tuition process
we have carried out numerical simulation of the neural networks for recognizing
a series of patterns (number of layers N=>5, number of images CBH = 640; the

error function:

Pmax Kmax

SSE = Z{ Z (p. k) = Olp, K)]*}, (4)

where O(p, k)— neural networks output & for image p and ¢(p,k) is the trained
image CB for output Pe; SSE is determined from a procedure of minimization;
the output error is RM S = sqrt(SSE/ Pyaz); As neuronal function there is used
function of the form: f(x) = 1/[1 + exp(—dz)]. In our calculation there is tested
the function f(z,T) = exp[(xT)?] too.

The result of the PC simulation (with using our neural networks package
NNW-13-2003 [21]) of dynamics of the quantum multilayer neural networks with
the input rectangular and soliton-like pulses is listed in fig.1 and fig 2. The same

results for sinusoidal and noisy input sequence are listed in [21]. Analysis of the
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PC experiment results allows to make conclusion about sufficiently high-quality
processing the input signals of very different shapes and complexity by a photon

echo based neural network.

Fig. 1. The results of modeling the dynamics of multilayer neural networks

with rectangular input pulse
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Fig. 2. The results of modeling the dynamics of multilayer neural networks

with soliton-like input pulse
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