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Abstract It is presented an numerical application of a consistent chaos-

geometrical combined approach to non-linear analysis and treating of chaotic of

chaotic self-oscillations in backward-wave tube. It combines together application

of the wavelet analysis, multi-fractal formalism, mutual information approach,

correlation integral analysis, false nearest neighbour algorithm, Lyapunov

exponent's analysis, surrogate data method etc.
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1. Introduction

In this paper we present an numerical application of a consistent chaos-

geometrical combined approach [1-10] to to non-linear analysis and treating of

chaotic of chaotic self-oscillations in backward-wave tube. It combines together

application of the wavelet analysis, multi-fractal formalism, mutual informa-

tion approach, correlation integral analysis, false nearest neighbour algorithm,

Lyapunov exponent's analysis, surrogate data method etc. As it is indicated

earlier [1-4], time series can be considered as random realization, when the ran-

domness is caused by a complicated motion with many independent degrees

of freedom. Chaos is alternative of randomness and occurs in very simple de-

terministic systems. Although chaos theory places fundamental limitations for

long-rage prediction, it can be used for short-range prediction since ex facte



Geometry of Chaos: Consistent combined 7

random data can contain simple deterministic relationships with only a few de-

grees of freedom. During the last two decades, many studies in various �elds

of science have appeared, in which chaos theory was applied to a great number

of dynamical systems, including those are originated from nature (e.g. [1-19]).

Now it is well known that in the modern electronics etc there are many phys-

ical systems (the backward-wave tubes, multielement semiconductors and gas

lasers, di�erent radiotechnical devices etc), which can manifest the elements of

chaos and hyperchaos in their dynamics (e.g. [8-10]). The key aspect of study-

ing the dynamics of these systems is analysis of the dynamical characteristics.

Chaos theory establishes that apparently complex irregular behaviour could be

the outcome of a simple deterministic system with a few dominant nonlinear

interdependent variables. The outcomes of such studies are very encouraging, as

they not only revealed that the dynamics of the apparently irregular phenomena

could be understood from a chaotic deterministic point of view but also reported

very good predictions using such an approach for di�erent systems.

2. Combined chaos-geometrical approach to to treating of chaotic self-

oscillations in backward-wave tube

The backward-wave tube is an electronic device for generating electromagnetic

vibrations of the superhigh frequencies range. In ref.[9] there have been presented

the temporal dependences of the output signal amplitude, phase portraits, sta-

tistical quanti�ers for a weak chaos arising via period-doubling cascade of self-

modulation and for developed chaos at large values of the dimensionless length

parameter. The authors of [9] have solved the equations of nonstationary non-

linear theory for the O type backward-wave tubes without account of the spatial

charge, relativistic e�ects, energy losses etc. It has been shown that the �nite-

dimension strange attractor is responsible for chaotic regimes in the backward-

wave tube. In our work in order to study the chaotic self-oscillations regimes in

the backward-wave tube we have used earlier developed and adapted techniques

of the non-linear analysis, such as the multi-fractal formalism, methods of cor-

relation integral, false nearest neighbour, Lyapunov exponent's, surrogate data

(code �Geomath�). As the key ideas of our technique for nonlinear analysis of

chaotic systems have been in details presented in refs. [1-8], here we are limited

only by brief representation..

Since processes resulting in the chaotic behaviour are fundamentally multivari-

ate, it is necessary to reconstruct phase space using as well as possible infor-

mation contained in the dynamical parameter s(n), where n the number of the

measurements. Such a reconstruction results in a certain set of d -dimensional
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vectors y(n) replacing the scalar measurements. Packard et al. [12] introduced

the method of using time-delay coordinates to reconstruct the phase space of an

observed dynamical system. The direct use of the lagged variables s(n + τ),

where τ is some integer to be determined, results in a coordinate system in which

the structure of orbits in phase space can be captured. Then using a collection

of time lags to create a vector in d dimensions,

y(n) = s(n), s(n + τ), s(n + 2 τ), . . . , s(n + (d − 1 )τ), (1)

the required coordinates are provided. In a nonlinear system, the s(n + j τ) are

some unknown

nonlinear combination of the actual physical variables that comprise the source

of the measurements. The dimension d is called the embedding dimension, dE .

According to Mane [16] and Takens [15], any time lag will be acceptable is not

terribly useful for extracting physics from data. If τ is chosen too small, then

the coordinates s(n + jτ) and s(n + (j + 1)τ) are so close to each other in

numerical value that they cannot be distinguished from each other. Similarly, if

τ is too large, then s(n + jτ) and s(n + (j + 1)τ) are completely independent

of each other in a statistical sense. Also, if τ is too small or too large, then the

correlation dimension of attractor can be under- or overestimated respectively

[3]. The autocorrelation function and average mutual information can be applied

here. The �rst approach is to compute the linear autocorrelation function:

CL(δ) =
1
N

∑N
m=1[s(m+ δ)− s̄][s(m)− s̄]

1
N

∑N
m=1[s(m)− s̄]2

, s̄ =
1

N

N∑
m=1

s(m) (2)

and to look for that time lag where CL(δ) �rst passes through zero (see [18]).

This gives a good hint of choice for τ at that s(n + j τ) and s(n + (j + 1 )τ) are

linearly independent. a time series under consideration have an n-dimensional

Gaussian distribution, these statistics are theoretically equivalent (see, e.g., [1-

3]). The general redundancies detect all dependences in the time series, while

the linear redundancies are sensitive only to linear structures. Further, a possible

nonlinear nature of process resulting in the vibrations amplitude level variations

can be concluded.

The goal of the embedding dimension determination is to reconstruct a Euclidean

space Rd large enough so that the set of points dA can be unfolded without am-

biguity. In accordance with the embedding theorem, the embedding dimension,

dE , must be greater, or at least equal, than a dimension of attractor, itdA, i.e.

dE > dA. In other words, we can choose a fortiori large dimension dE , e.g.
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10 or 15, since the previous analysis provides us prospects that the dynamics

of our system is probably chaotic. However, two problems arise with working in

dimensions larger than really required by the data and time-delay embedding [1-

4,13-17]. First, many of computations for extracting interesting properties from

the data require searches and other operations in Rd whose computational cost

rises exponentially with d . Second, but more signi�cant from the physical point

of view, in the presence of noise or other high dimensional contamination of the

observations, the extra dimensions are not populated by dynamics, already cap-

tured by a smaller dimension, but entirely by the contaminating signal. In too

large an embedding space one is unnecessarily spending time working around

aspects of a bad representation of the observations which are solely �lled with

noise. It is therefore necessary to determine the dimension dA.

There are several standard approaches to reconstruct the attractor dimension

(see, e.g., [1-18]). The correlation integral analysis is one of the widely used

techniques to investigate the signatures of chaos in a time series. The analysis

uses the correlation integral, C (r), to distinguish between chaotic and stochas-

tic systems. To compute the correlation integral, the algorithm of Grassberger

and Procaccia [13] is the most commonly used approach. If the time series is

characterized by an attractor, then the integral C (r) is related to the radius r

given by

d = lim

r → 0

N →∞

logC(r)

log r
, (3)

where d is correlation exponent that can be determined as the slop of line in

the coordinates log C (r) versus log r by a least-squares �t of a straight line

over a certain range of r , called the scaling region. If the correlation exponent

attains saturation with an increase in the embedding dimension, the system

is generally considered to exhibit chaotic dynamics. The saturation value of

correlation exponent is de�ned as the correlation dimension (d2 ) of attractor.

Lyapunov exponents are the dynamical invariants of the nonlinear system. In a

general case, the orbits of chaotic attractors are unpredictable, but there is the

limited predictability of chaotic physical system, which is de�ned by the global

and local Lyapunov exponents. A negative exponent indicates a local average

rate of contraction while a positive value indicates a local average rate of expan-

sion. In the chaos theory, the spectrum of Lyapunov exponents is considered a

measure of the e�ect of perturbing the initial conditions of a dynamical system.
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Since the Lyapunov exponents are de�ned as asymptotic average rates, they are

independent of the initial conditions, and therefore they do comprise an invari-

ant measure of attractor. In fact, if one manages to derive the whole spectrum of

Lyapunov exponents, other invariants of the system, i.e. Kolmogorov entropy and

attractor's dimension can be found. The Kolmogorov entropy, K , measures the

average rate at which information about the state is lost with time. An estimate

of this measure is the sum of the positive Lyapunov exponents. The inverse of

the Kolmogorov entropy is equal to the average predictability. There are several

approaches to computing the Lyapunov exponents (see, e.g., [1-5,10,17]). One

of them [1,17] is in computing the whole spectrum and based on the Jacobin

matrix of the system function.

3. Numerical results and conclusions

In table 1 we present the data on the Lyapunov exponents' for two self-

oscillations regimes in the backward-wave tube: i). the weak chaos (normalized

length: L=4.24); ii) developed chaos (L=6.1). The correlations dimensions are

respectively as 2.9 and 6.2.

Table 1. numerical parameters of the chaotic self-oscillations in the backward-

wave tube: λ1 − λ6 are the Lyapunov exponents in descending order, K is the

Kolmogorov entropy

Regime λ1 λ2 λ3 λ4 λ5 λ6 K

Weak

chaos

L=4.24

0.261 -

0.0001

−0.0004 −0.528 − − 0.261

Hyperchaos

L=6.1

0.514 0.228 0.0000 −0.0002 −0.084 −0.396 0.742

Our analysis is in very good agreement with the similar data [9] and con�rms a

conclusion about realization of the chaotic features in dynamics of the backward-

wave tube. Thus, we have considered a problem of a chaotic oscillations in dy-

namics of the backward-wave tube within earlier formulated formally theoretical

basis's of a consistent chaos-geometrical approach to treating of chaotic dynami-

cal systems. This approach combines together the non-linear analysis methods to

dynamics, such as the wavelet analysis, multi-fractal formalism, mutual informa-

tion approach, correlation integral analysis, false nearest neighbour algorithm,

the LE analysis, surrogate data method etc. We have investigated a chaotic ele-

ments for two self-oscillations regimes in the backward-wave tube and proved an

existence of the low-dimensional chaos in the corresponding time series (dynam-

ics). The presented example has shown high perspectives of a combined chaos-
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geometrical approach methods to treating chaotic dynamics of very complicated

quantum-electronics, radio-technical systems, devices etc.
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