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RELATIVISTIC POLARIZATION POTENTIAL OF A MANY-ELECTRON ATOM 
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An effective approximate calculation of the exchange-polarization second-order 
diagrams in the Rayleigh-Schrodinger perturbation theory with the use of the 
relativistic Thomas-Fermi approximation is described and used to obtain a new 
relativistic expression for the effective two-particle polarization interaction 
potential in a many-electron atom. 

i. The need to solve such important problems as heavy plasma diagnostics, the creation 
of short-wave lasers on multiply-charged ions, etc., has stimulated interest in the study of 
the spectroscopic characteristics of highly ionized and heavy neutral atoms. The character- 
istic feature of calculations for these systems is the need for a systematic treatment of 
both relativistic and' exchange-polarization effects in both one-particle and many-particle 
systems. In recent years these calculations have usually been performed using the relativis- 
tic density functional method (see [i-4], for example) and also methods similar to the 
relativistic model potential methods [5-8], in which the principal one-particle relativistic 
and correlation effects can be taken into account. However, two-particle and many-particle 
effects, which are just as important in precision calculations, as well as effects of higher 
order (beginning with second order) in perturbation theory must be taken into account by a 
direct calculation in perturbation theory. It is well known that such a calculation is very 
complicated and laborious and a practically impossible calculation of infinite sums in pertur- 
bation theory is required in order to obtain a correct description of such complicated effects 
as the pressure of the continuum and the rapid spreading of the initial state over a vast set 
of additional configurations. An alternative method is the use of many-particle relativistic 
exchange-polarization interaction potentials. The problem of how to construct these potentials 
has still not been solved completely [2-4]. In the present paper we use the relativistic 
Thomas-Fermi approximation to obtain a new relativistic expression for the effective two- 
particle interaction potential in a many-electron atom, which approximates the exact contribu- 
tion of the exchange-polarization diagrams of second order in perturbation theory (these 
diagrams give the dominant contribution to the correlation). Atomic units are used throughout. 

2. There are two basic types of diagrams in second-order relativistic perturbation theory 
diagrams with Hartree-Fock inserts (Fig. i, A, B, C) and diagrams without them (Fig. 2, A, B, 
C, D). It has been shown by Tolmachev [9] (see also [i0, ii]) that in perturbation theory with 
the Hartree-Fock or Dirac-Fock zeroth approximation, the contribution of all diagrams with 
Hartree-Fock inserts exactly cancels out in all orders of perturbation theory. Corrections 
to the energy from the so-called ladder diagrams (exchange D and direct C diagrams) can be 
taken into account almost completely in the zero-order one-particle approximation of perturba- 
tion theory [12, 13]. The polarization diagrams (A and B in Fig. 2) correspond to many- 
particle effects and cannot be taken into account in a one-particle treatment, even in prin- 
ciple [14-16]. 

We calculate the contribution of the direct polarization diagram A of Fig. 2. It des- 
cribes the polarization interaction of two electrons in states ~z and ~2 (or vacancies) 
through the polarizable medium (the other electrons of the system will be called core elec- 
trons). The exact contribution to the energy of the system can be represented in the form 

E(A)= --2 ~ (~V0o~ (~V,)o~/(E~-- Eo), (i) 

where 

v~ ( r )  = y c l r% (r ') / t  r - r ' / ,  p~ (r)  = r (r)  ~ (r);  i = 1, 2. (2) 
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The matrix elements (6Vi)0K in (i) are calculated between the ground state 10> and the 
excited states I<> of the core. The expression for E(A) can be written in two equivalent 
forms : 

E ( A )  = ~(dr 'dr"~ ,  (r') ~ ) ( r " t 2 ) / [ r '  --  r"[ = ]~dr 'dr"~z (r"  ) o~:" ~') (r" 11)/[ r ' - - r " .  [. 
( 3 )  

The total density of the system is written as 

p~(r) =o~  ~ (r) + a~9~ (rt ~) + ~ .  (r /2)  + .... 

where p c ( ~  is the electronic density distribution in the core; 6pc(I)is the first-order 

correction to pc (~ due to the perturbation 6V i. To calculate 6pc(1)(rli) we use the rela- 

tivistic Thomas-Fermi method (see [i, 2]). In this approximation 

[ J 

where V(r) is the total potential in the core, including 6V I and 6V2; and ~ is a constant. 

Linearizing (4) in the perturbation 6Vi, we obtain 

S<~ ( r i o  ~ p~o~r~ (r)12J~/c=}~,2 ~, (r)  {I -F [3:,'P~ ~ (~V~ (r)  -- 5F). ( 5 )  

The constant 6~ can easily be determined from the conservation of charge condition: 

; dr~p~ ~> (r  I i) = O. ( 6 )  

Substituting (2) and (5) into one of the forms (3), we obtain the following expression 
for the direct polarization contribution to the energy E(A): 

, ,(d) 
E (A) = S S dr,dr2P, (rl) Vpo, (r,, r2) p, (/'2) 

wi th  the  e f f e c t i v e  t w o - p a r t i c l e  i n t e r a c t i o n  

via) po, (r, ,  r2) = X {S dr'p~ ~ (r')  (1 --[- 13= '~  ) (r')]~'t3/c~)~'=/! r , - - r '  [[ r ' - - r~  I-- 

- [S ar'p~ ~ (r ' )  (1 + [3=~c ~ (r')]~,~/c').VI r,  - r '  I X ydr"ptc ~ (r") X (7) 

• (1 + [3=z~ ~ (W' ) ]~ /c ' ) , , , l t r " - - t :=  I]/~ drpr ~''z (r) (1 -}-[3==r,~ ~ (r)]='=/c=)'/2}. 

Here X is a numerical factor (see below). The second term in (7) arises because of 
6~ in (5). The exchange polarization diagram B of Fig. 2 is calculated in a similar way. 
We then obtain for the exchange part of the potential Vpoi(ex) 

vp~e;I (r , .  r2) = X (0.375)u3 {[t(co~tj3 (rz)(1 _{_ [3~2p~ (r,)]~,3/c2)112 + O| ~ ~ -  . 

+ ~o,~ try) (1 + [3=~p~ ~ ( r ~ ) ] 2 ~ / c ' ) ~ l / i  r ,  - r~ ~ - S d r ' ~  ~-~3 ( r ' )  ( 1 + ( 8 ) 



+ [3='~? ) (r')]~r t~f )-''~ (r,)(~ + l~=~o~ ~ (r~)F,'~/cD-~/I r" - r, I + 

+ p~'~-~/~ (r~)(~ + [~p?)  (r~)]~/'c~)-'~/l r' - r~ I1/~ ~rP? )~/~ (r) (~ + 
[q 2. (o) + t~= pc (r)1213/c2)~2}. 

As shown by numerical calculations, the contribution to the energy of the system from the 
exchange polarization diagram is usually two orders of magnitude smaller than the contribu- 
tion from the direct diagram (see [12, 17], for example). Letting c + ~ in (7) and (8), we 
obtain the corresponding nonrelativistic expressions for vid) and viex) (see [17]). 

po• po• 
3. The coefficient X is found as follows. We consider the polarization interaction of 

two charged particles with charge distributions pz(r) and pz(r), where one of the particles 
is positively charged and localized at the nucleus, i.e., p1(r) = 6(r). The contribution to 
the energy is then 

, / d )  E ( A )  = ~dr~dr~9,  ( r t )  vpol ( r t ,  r2) p2 (r2) = A'{( . f d r2d r  %t(Dz/;~,~ (W)(1 

+ [3=~P~~ ~/2 P2 (r2)/[ r ' [  i r '  --  r2 I - -  [~ f dr2ctr'o~ ~ (r') (1 + 

+ [3=2p~ ~ (r')]2~/c~) m p= (r2)/1 r2 --  r ' l  ;. ( r" )  ([ + 

+ 13=~o~~ ~] )~21r"113 c ir ,7  'l/~ ( r )  (1 + [3~'o~ ~ ( r ) ] ~ / c D ~ } .  

(9)  

The energy(E(A) can be estimated in this case without using the Thomas-Fermi method. 
The function Pc 0)(7) for a charge localized at the nucleus can be found analytically using 
Gauss' law: 

where Vc(r) is the potential. 
charge is given by 

1 0 (r , .Vc(r ' Z) ) ,  (i0) 
p~O~ (r) _ r ~ Or 

The deformation of the core caused by the additional unit 

1 0 2 0 (Ii) 
~(rll)- r' aZ~(r~'~ v~(r' Z~). 

Substituting (ii) into (3), we find for E(A): 

�9 r ~ - -  V~(r~, Z )  . E (A)  = --  dr,  dr2 I r~ -- r2 [ r~ OZOr Or~ 

Equating (9) and (12), we find the coefficient X. The potential (7) in this case imitates 
the interaction between a particle with pz(7) = 6(7) and a particle with arbitrary p2(7). 
In general the quantity X is a functional of two arbitrary densities: X[pz(r), p2(r)]. In 
the case of arbitrary distributions Pl, P2 the coefficient X is naturally defined in the form 

X = X [ ~ ( r ) ,  p ~ ( r ) ] . X [ ~ ( r ) ,  ~ ( r ) ] / X [ ~ ( r ) ,  ~( r ) ] .  

4o Earlier forms for Vpo I, especially the relativistic analog of the Bottcher-Daigaarno 
two-electron polarization potential Vnol BD [18], have significant disadvantages in comparison 
wz �9 BD r . "th (7) and (8). The potentzal Vpo I depends on the dlpole and quadrupole poiarizabilities 

of the core, which must first be obtained in an independent calculation. The region of small 
rlr2, where the use of Vpol BD is incorrect, is excluded in VpoiBD by introducing a cut-off 

factor. However, this region is very important for particles whose orbitals penetrate in- 
side the core. The Rajagopal--MacDonald-Vosko relativistic exchange potential (see [2, 3], for 
example) is a one-particle potential, and therefore, cannot be used to describe many-particle 
effects, even in principle. 

Finally, we note that the potentials (7) and (8) should certainly be used in precision 
systematic relativistic calculations of atoms and ions using relativistic perturbation theory 
for the Dirac equation with the inclusion of the Breit corrections to the Coulomb interaction 
potential due to retardation and magnetic interactions. In addition, the expressions ob- 
tained here give the polarization interaction energy as an effective parameter-independent 
functional depending only on the electronic densities. Hence, it can be used to improve the 
density functional theory (more exactly its relativistic variant). 
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