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A relativistic multiconfiguration time-dependent self-consistent-field theory 
is constructed for molecules. Equations are derived for relativistic response 
functions, and their solutions are found in general form for multielectron 
molecules. Within the adopted approach, the equivalence of the results of re- 
lativistic calculations of the oscillator strengths in the molecules is demon- 
strated by using equations in "length" and "velocity." A relativistic formal- 
ism is formulated for the Liouville--Dirac--Fock self-consistent field; this 
formalism may be very effective in molecular calculations. 

One pressing task for modern molecular theory is to develop consistent relativistic 
methods of molecular calculations (see, e.g., [i]). This is due to a number of factors, 
particularly the fact that accurate calculations of heavy and superheavy molecular systems 
require allowance for relativistic effects in addition to correlation effects. An adequate 
description of the characteristics of chemical bonding in a number of compounds of d and f 
elements, particularly oxides of lanthanides and actinides (see [2]), is possible only when 
relativistic interactions, specifically spin-orbit interactions, are taken into consideration. 
In recent years a number of relativistic versions of well-known nonrelativistic quantum 
chemical methods have been developed: among the semiempirical methods are the method of the 
relativistic model potential, the relativistic X a method, and others, and among the nonemp- 
irical methods are the relativistic one-configuration Hartree--Fock (HF) method, the Dirac-- 
Fock (DF) method, and others (see [3-7])~ However, the specific application of most of these 
methods of molecular calculations entails a number of both computational and theoretical 
problems. For instance, proper handling of relativistic operators requires the use of the 
bases of the relativistic orbitals, which are considerably larger in volume than in the cor- 
responding nonrelativistic versions. Correlation effects must be taken into account accurate- 
ly in consistent molecular calculations. As we know, the one-configuration Hartree--Fock and 
Dirac--Fock self-consistent-field methods do not take into account the correlation, and more- 
over the one-configuration wave function does not make it possible to obtain the correct dis- 
sociation limit. The recently formulated multiconfiguration Dirac--Fock self-consistent-field 
method [8] has not come into use in molecular calculations because of the still essentially 
insurmountable computational difficulties, although in light of recent achievements that 
improve optimization techniques [9] and of course progress in computational technology, it 
remains an extremely promising method of relativistic quantum chemistry. The same also applies 
to the time-dependent counterparts of the method. The purpose of this paper is to formulate 
the relativistic multiconfiguration time-dependent (TD) formalism of the Dirac--Fock self- 
consistent field for molecules, which generalizes the corresponding multiconfiguration Har- 
tree--Fock formalism. Moreover, this paper offers a new nonempirical approach to molecular 
calculation, the Liouville-Dirac-Fock method, which has a number of advantages over other 
traditional a priori methods. The literature contains a fairly large number of formulations 
of time-dependent nonrelativistic theories, particularly time-dependent one-configuration and 
multiconfiguration Hartree--Fock theories, the random-phase approximation, the method of line- 
arized equations of motion for electron--hole excitations, the moment expansion of the polar- 
ization propagator, and generalizations of these theories (see, e.g., [i0, ii]). These ap- 
proaches are essentially nothing but in some sense equivalent formulations of linear response 
theory for multielectron molecules. Of course, the relativistic formulation has its own 
peculiarities. 
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TEMPORAL VARIATIONS OF THE DIRAC-FOCK 
MULTICONFIGURATION WAVE FUNCTION 

To consider the temporal variations of the multiconfiguration Dirac--Fock wave function 
~(t), we use the Frenkel variational principle in the form [12] 

R e < g ~  i ~t -- H] 'F> = O. (1) 

The wave function in the multiconfiguration Dirac--Fock theory is expressed in terms 
of the expansion in configuration functions with expansion coefficients Ci: 

I o >  = E Ioi>ci .  ( 2 )  
l 

The functions @i are formed by a minimal number of Slater determinants from the one- 
electron molecular spinors (MS's) {ffi} so that the symmetry requirements of the wave function 
are observed. It is assumed that the MS's form the orthogonal system 

<q~,lq~i> ---- 6(4 j). 

Each MS has the form 

(~ ,If 

\~i4 " 

(3) 

and in the Roothaan expansion method is represented as a linear combination of atomic spinors 
Xp centered on different atoms of the molecular system: 

(~i = s XpCpi, 
.=1 (4) 

where Xp is a four-component atomic spinor. The condition of orthonormality is ,~.Cpi SpqCqi= 
Pq 

6(i, j), where Spq = <•215 is the overlap integral. Now let an external perturbation in 
the form 

W(t) = (Ve -i'~t + V+ei~ 'it, ( q >O ) ,  (5 )  

which corresponds to adiabatic inclusion, be applied to the molecular system. 
the following expression as the ansatz for the bispinor [~(t)>: 

=('e ~  ̂ Ol(etK 0 
I q , ( t ) >  

~,o e ~ J \ o  e ~L / I(!>e-'p'' �9 (6 )  

where A, K, ~, and L are Hermitian operators that generate transformations of the wave- 
function components and the correlation coefficients C i in Eq. (I). According to [ii], 
and K may be represented as 

A 

A = .~  (A~s a.~ + a~-k A, , .a2aJ = "~(,A,q+.+ A;q,); 
,>~, ' , (7) 

A 

t< = w~ i )n> a. <ol  + Io> a~, <,~11 : ~ (a.,~.+ + a;,,r 
( 8 )  tl n 

where a + anda are the electron creation and annihilation operators, and [n> is defined as 

We introduce 

l n >  = ~ l o i > c i , .  c + c = l  
i 

and forms an orthogonal supplement to the unperturbed state [0>. 

(9) 

The quantities ~ and L also 
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can be defined analogously. Variational principle (I) with [~> in the form of Eq. (6) 
then enables us to obtain the system of equations 

~(<1 ,~, IH, -~] l>+ i<I~A +~K, ~k + k t >  =--i<I~A+~.~, HI> + ~  

-~ . . ~ ,  ~H, ~ I I> )+~<F< ,  l H, A]I>- i  ...; 

i<laS~ + ~L, ~-k-Ll> =-- i< l~ ' :+~Z, H l>  + !~(<l'-- ' , IH, S211> + 
2 ( i 0 )  

+ < I L ,  I/4, L ] I > ) + ~ < I L ,  IH, '-']]> + .... 
If we hereafter write the total Hamiltonian as the sum of the unperturbed part H 0 and 

the perturbations W(t), where H = H 0 + W(t), and using the generalized Brillouin theory 
<[6A + 6K, H0]> = 0 and the identities 

6 <  [~, fHo, A]] > = 2 <  [6.~, [Ho, A]] > ,  
(1~) 

6<[-Q, [Ito, Q ] ] > - - Z < [ B L L  [Ho, L)]]>, 

in the linear response approximation, we obtain the following instead of Eq. (i0): 

~<I~A-4-~K, A-i-X]> = - -  f-..C[L,~ +~K, ~V(t)t> + 

+ <1~.~ + ~ ,  l/-/o, A l l>  i- < [ l~x+ ~K, Hol, KI>, 
i< l~+aL ,  'L' +LI> = - -  i < I ~ , O + ~ L ,  ~ ( t ) l >  + 

+ <I~,2 + ~,.L, IH,,, s <t1~,:~ + ~,L, Hol, L ] > .  (12) 

RELATIVISTIC RESPONSE FUNCTION FOR A MULTIELECTRON MOLECULE 

In the linear response approximation with consideration for the type of operator W (5), 
the functions A(t), d(t), ~(t), and L(t) may be constructed in the form 

"/,~ ( t )  = =,I (~) e-"'~ _? ~1 (~) e-l~='~ ; 

d~ (t) = ~.1 6 o) e-..,+l~,lL + ~ (o,) e-i~-"'+J~t; 

~ (t) = ~,2 (to)e--"~+i~ ~ + ~o ( o ~ ) e - i l - ~ + ~ t ;  

L~ ( t)  = ~.,~ (~) e -" '~  '' + ~;,: (,,~) e - . - , , '+~.  

(13) 

(14) 

With consideration for Eqs. (7)-(8), (13), and (14), Eq. (12) reduces to a linear system 
of equations for the quantities ~v,n and ~v,n- Introducing for convenience the following 
matrices by analogy with [ii] 

�9 t<lu.,  [Ho, q?]l> <I,~.[Ho, "+l l> 
S,=(SO~ S=I <[q'q~]><[q" ~c+]> 1 

ko s/ ' I ,< l .~q+]> <1.~, ~ + ] > l '  

as well as the matrices B I and 41, which are analogous to A l and S z, but with the difference 
that the operators q and k are adjoint, we write the sought system as 

(~+i~)  A t - - s ~ , -  ~?A*/I  ~ /  G '  (15) 

where 

\ en'2/ 

 =Ho, f 
i<lq,,, v l > l  

v, = I<[q,, Vl> [. , v l > l ,  v i =  

t<[tc~. V]>I  

r vl>l 
<lq +, vl>l 

i<[,~t, vl>[" 
L<[,~+.. vl>t 
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The solution of Eq. (15) now is found by using well-known standard methods (see, e.g., 
[ii, 13]). In concluding this section, we will note that, as in the multiconfiguration 
Hartree--Fock theory, in the relativistic Dirac--Fock approach the different equivalent ex- 
pressions for determining the oscillator strengths in molecules that are known to character- 
ize the electron transitions in the absorption spectrum give the same result. The proof is 
almost entirely analogous to the proof in the multiconfiguration Hartree--Fock theory, but 
with the difference that relativistic propagators now are involved in our treatment and the 
matrix elements are selected on the bispinors [0>, [J>. The value of the oscillator strength 
of the molecule in the dipole approximation is given by the equations: 

In the "length" approximation 

/~j= 2 (E,-Eo)l  <0IRIJ> I z 

And in the "velocity" approximation 

2 
= T - So) 

A 
I I < o l P I J > I '  

Here R and P are respectively the dipole moment operator and the linear moment operator, 
which are related by the Heisenberg equation: 

i P  = [ R ,  Ho]. 

The matrix elements from the operators R and P on the bispinors and hence fs and fv are 
related to the corresponding propagators by the equations 

= 2 
~-mjRes [Sp ~R, R~E]; 

2 -1 /$ = ~- ms Res [Sp <<P, P>>E], 

where Res signifies the residue in the pole ~j = (wj = Ej--E0). Then with consideration for 
the identity EZ<<R, R>> E = <<P, P>>E + i<[P, R]>, we obtain f0j s = fv. 

LIOUVILLE-DIRAC-FOCK FORMALISM IN THE THEORY 
OF MULTIELECTRON MOLECULES 

Although, as we indicated above, the Dirac--Fock method is as before a promising ab 
initio method in molecular calculations; nonetheless, existing theoretical or computational 
difficulties limit the possibility of using it extensively. A method of calculating energies 
and transition probabilities that is based on a procedure for solving the Liouville equation 
was proposed recently in [14] as an alternative to the Dirac--Fock formalism for multiply 
charted ions and ionized atoms. The promise of this method in the sense of making allowance 
for correlation effects has been demonstrated through the example of a calculation of argon- 
like ions. We believe that this approach may prove especially effective in molecular theory 
as well. We shall present a derivation of the basic equations of Liouville-Dirac-Fock formal- 
ism for a multielectron molecule. The equation for the eigenvalues of the Liouville operator 
has the form 

L t  = [ I t ,  t] = ~,t, (16) 

where H is the Dirac multielectron Hamiltonian, which for a molecule has the form 

(all notations here are standard). Let the multiconfiguration wave functions for the initial 
and final states of the molecule that are a result of excitation, for example, be determined 
from expressions (2). Then the Liouville equations can be solved if we adopt the matrixelements 
in Eq. (16) on the functions of the initial and final states [@i > and [~f>. As a result we 
have 
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%~].,U~.~<tz H, tJli> -=L~Ai . ,< . t z[ t ] i>;  
i , n  i .  a 

Iq'F> = .~C, l i> .  I,t,z> = WC. in>, 
[ = l  I t : l  (17) 

where Min = CiC ~. Taking into account 

1 = Z l m > < t . I  + ~ l / > < J l ,  
m 7 

we may rewrite Eq. (17) in the form 

~ M ~ , < n l H I m ' - -  < m l t l i > - - ~ m , ~ < n l t l J >  < j l h ' l Z >  = 
i ,  n ,  m i n j  

= "t.~M~. < n l t l i > .  
i n  ( 1 8 )  

Then, regrouping the terms in Eq. (18), after the usual transformations we obtain 

where Hij = <i[H[j>. As a result we obtain a system of NiN f independent equations: 

~_. M,~H..,--Y2, HuAij,,--'~.M., = 0 
m ) 

The solution of this system can be effected by using the usual self-consistent 
variational procedure, as in Dirac--Fock theory. Let us emphasize in conclusion that a 
calculation of the oscillator strengths using the wave functions calculated on the basis 
of the solution of Eq. (18) is gauge invariant. The problem is that, as in the case of 
atoms, the gauge-dependent part of the dipole transition operator in the case of a molecule 
has the form 

(i [ o.vd),__ + a~l,. 1, 
! - i k  

where ~s is the scalar potential (~s ~ C~(Z)(O, (F)), and moreover ~s satisfies the 
equation 

< , r l  [mJ~,d I , i >  = z<*~lq ' ,~ i* ,> .  

By virtue of the validity of the relation 

[Hdb.] ---- --i[c~ V. 0..] = --icL 7 0.. ,  

the gauge-dependent term may be written as 

Q[ [/-l,_),~,x, {.(D~]. 
(19) 

As one can see readily, matrix element (19) is canceled. Gauge invariance is observed 
in this case, primarily as a result of the completeness of the system of states in the com- 
mutators in Eq. (17), and also because ~i and ~f are the eigenfunctions of the operator H. 
Of course, in specific quantum-chemical calculations one must deal with limited bases (especi- 
ally in relativistic calculations); in this case gauge invariance naturally will not be ob- 
served. At first glance this unhappy circumstance may prove quite useful for use if con- 
structing optimized chemical bases. This question will be addressed in a separate paper. 
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