Таблиця 1 Концентрації важких металів у донних відкладах та воді Хаджибейського лиману (вересень 2014р.) (М±m, n=3)

	Концентрація	Концентрація рухомої	Концентрац
Елемент	валової форми	форми елемента у	ія у воді
	елемента у грунті,	грунті	мг/л
	мг/кг	мг/кг	
Zn	34,3±12,64	21,7±5,46	5,7±1,5
Со	9,6±2,37	7,3±1,57	0,091±0.01
Ni	38,7±3,60	20,2±3,13	0,4±0,1
Cd	0,9±0,190	0,7±0,104	0,076±0,01
Cu	8,8±0,53	6,6±1,44	0,091±0,01
Mn	96,4±10,46	85,1±4,42	12,3±1,08
Pb	30,7±2,21	11,9±1,07	0,76±1,07
Fe	48.4±1,66	34,3±2,15	14,5±1,2

На узбережжі водойми Хаджибея розташовані населені пункти та дачні масиви, а у верхів'ї зосереджені тваринницькі фермерські господарства, які також вносять свій внесок у забруднення лиману [2].

В ході власної експедиції проведеної у вересні 2014 року було взято проби мулу та води Хаджибейського лиману Одеської області. Результати проведених дослідів на вміст важких металів у воді та донних відкладах Хаджибейського лиману зазначені у табл. 1.

Для аналізу динаміки розподілу важких металів у воді та донних відкладах Хаджибейського лиману ми порівняли дані середніх значень наших досліджень (вересень 2014року) із середніми даними досліджень Одеського інституту водного господарства наведених у науковій літературі за 2005-2009 роки (табл. 2).

Проаналізувавши дані валової форми вмісту важких металів у донних відкладах Хаджибейського лиману можна відмітити позитивну зміну, тобто менший вміст, елементів Zn, Co, Ni, Cd, Cu, Mn, Pb, Fe у 2014р., порівняно з 2001-2009р.р.

Бачимо, що валова форма Zn, Ni, Cd, Cu, Mn, Fe у 2014р. також не перевищує санітарно-гігієнічних норм ГДК, що не можна сказати про Со, Рb, вміст яких вважається небезпечним для екосистеми лиману і перевищує ГДК, відповідно, у 1,92 і 1,5 рази.

Таблиця 2 Концентрації важких металів у донних відкладах та воді Хаджибейського лиману (2001-2009р.р.), (М±m) [1]

	Концентрація	Концентрація	Концентрація у
	валової форми	рухомої форми	воді,
	елемента у донних	елемента у	$\mathrm{M}\Gamma/\mathrm{J}$
	відкладах,	донних	
Елемент	$M\Gamma/K\Gamma$	відкладах,	
		мг/кг	
Zn	106,2±12,64	29,3±5,46	5,31±1,5
Со	28,9±2,37	19,6±1,57	0,09±0,01
Ni	67,4±3,60	52,3±3,13	0,012±0,01
Cd	1,95±0,190	1,3±0,104	0,017±0,01
Cu	13,4±0,53	3,67±1,44	0,089±0,01
Mn	285,7±10,46	144,1±4,42	0,19±0,1
Pb	92,1±2,21	49,2±1,07	0,06±0,01
Fe	89,2±1,66	48,9±2,15	1,45±0,1

Також ці дані співставили з визначеними значеннями санітарногігієнічних норм ГДК для взятих елементів (табл. 3).

Таблиця 3 ГДК вмісту важких металів у воді та донних відкладах водойм (санітарно-гігієнічні норми) [1]

Елемент	ГДК валової форми	ГДК рухомої форми	ГДК води
	мг/кг	мг/кг	мг/л
Zn	100	23	5
Co	5	1	0,1
Ni	85	4	0,01
Cd	30	3	0,01
Cu	55	3	1,0
Mn	295	500	0,1
Pb	20	6	0,03
Fe	Не нормовано	Ненормовано	0,3

Проаналізувавши вміст рухомої форми важких металів у донних відкладах Хаджибейського лиману бачимо, що зміна концентрації Zn, Co, Ni, Cd, Mn, Pb, Fe у 2014р., порівняно з 2001-2009р.р. є позитивною. Елементи Co, Ni, Pb - перевищують ГДК відповідно у 7,3, 5, 2 рази. А

вміст Си за нашими даними (експедиції у вересні 2014року) у цій формі перевищує концентраційні дані за 2001-2009 р.р. і у 2,2 рази перевищує ГДК.

Проаналізувавши вміст важких металів у воді Хаджибейського лиману, варто відмітити значне погіршення стану води з періоду їх дослідження за 2001-2009р.р. до проведення експедиції у вересні 2014р. Зокрема усі елементи (Zn, Co, Ni, Cd, Cu, Mn, Pb, Fe) за дослідженнями у 2014р. мають більшу концентрацію, ніж у 2001-2009р.р. Лише Со і Си не перевищують норм ГДК. Концентрація у воді Ni, Cd, Mn, Pb, Fe перевищує ГДК відповідно у 1,14, 40, 7,6 123, 25 і 48 рази.

Література

- 1. Водний баланс Хаджибейського лиману за різних умов його існування: Звіт з НДР. Од. держ. екол. ун-т. Одеса, 2011. 86 с.
- 2. Екологічний паспорт регіону. Одеська область, 2013. 139с.

УДК 631.4 (477.74) (26.05)

УМОВИ ГРУНТОУТВОРЕННЯ, ГРУНТИ І ГРУНТОВИЙ ПОКРИВ БАСЕЙНУ КУЯЛЬНИЦЬКОГО ЛИМАНУ

^{1,2}П.І. Жанталай, к.геогр.н., ²Г.М. Шихалєєва, к.х.н.,в.н.с., ²Г.М. Кірюшкіна, с.н.с.

¹Одеський національний університет імені І.І.Мечникова, м. Одеса ²Фізико-хімічний інститут захисту навколишнього середовища і людини МОН і НАН України, м. Одеса

Грунтовий покрив басейну Куяльницького лиману (Кл) має свої специфічні риси, пов'язані, з одного боку, із значною меридіональною протяжністю самого лиману та річок Великий і Малий Куяльник, з іншого − з його географічним положенням в смузі переходу середнього Степу до південного (сухого). Це зумовлює доволі значну контрастність структури грунтового покриву території, в межах якої домінуючими фоновими грунтами є чорноземи південні, чорноземи південні залишково та слабо солонцюваті [1]. Ці грунти сформувались в умовах сумісної дії природних чинників ґрунтоутворення, прояв яких в умовах антропогенезу істотно змінився.

В геоморфологічному відношенні територія досліджень розташована в межах району Дністерсько-Бузької акумулятивно-денудаційної плоскої слаборозчленованої лесової підобласті Причорноморської рівнини, пластово-акумулятивної відкладах, низовини на неогенових Причорноморської області пластово-акумулятивних пластоводенудаційних низовин Східно-європейської полігенної рівнини [2].