СИНТЕЗ И СТРОЕНИЕ ПРОИЗВОДНЫХ 17,9-ДИНИТРО-5-ФЕНИЛ-1,4-БЕНЗДИАЗЕПИНА И ЕГО БЕНЗО[*b*]АНАЛОГОВ

А. Т.А. Дворкин, Ю. А. Симонов, Э. И. Иванов, Г. В. Федорова, Р. Ю. Иванова

В литературе имеются лишь отдельные сведения о получении 1,4-бенздиазенинов (II) взаимодействием 5-замещенных-2-хлорбензофенонов (Ia) с этилендиамином [1,2].

¹ Поскольку возможность использования в этой реакции других реагентов ранее не рассматривалась, было решено осуществить синтез соединений (III—VI) и изучить их структуру, так как известно, что фармакологические свойства физиологически активных веществ зависят от их геометрии [³]. Синтез соединений (III—VI) осуществлен по приведенной схеме:

$$0_{2}N \xrightarrow{R} R^{2} = C_{6}H_{5}, \quad R^{3} = NO_{2}, \quad CF_{3}, \quad CL, \quad SO_{2}NH_{2}. \quad I6, \quad R^{1} = R^{3} = NO_{2}; \quad R^{2} = C_{6}H_{5}.$$

Производные (III—VI) легко образуются при нагревании исходных хлорбензолов (16, в) с соответствующими диаминами в среде подходящего органического растворителя.

Как и следовало ожидать, реакция протекает быстрее и в более мягких условиях, чем в случае 5-замещенных-2-хлорбензофенонов [1, 2], что объясняется большей подвижностью атома хлора в соединениях (Іб, в). Это позволило использовать в дапном синтезе наряду с этилендиамином и о-фенилендиамин, расширив тем самым границы применения рассматриваемой реакции. Строение синтезированных веществ (III—VI) подтверждено дапными ИК спектров, состав — данными элементного апализа, чистота контролировалась методом ТСХ. Молекулярные массы соединений (III—VI), измеренные масс-спектрометрически, соответствуют рассчитанным. Некоторые характеристики синтезированных соединений представлены в табл. 1, 2.

Структура бенздиазепина (IV) доказана методом рентгеноструктурного анализа. Вырастить кристаллы для дифракционного эксперимента требуемых размеров в случае соединений (III, V, VI) не удалось.

Проекция структуры на плоскость сопряженного бензольного кольца для соединения (IV) приведена на рисунке. Конформация 7-членного гетероцикла — твистованная лодка. Величина отклонения от идеальной конформации $\Delta s = \sqrt{(T_0^2 + (T_1 + T_2)^2)/4}$, где T_1 — торсионные углы по гетероциклу, равна 18.3°. Эта величина значительно больше, чем для про-

ТАБЛИЦА 1 Константы, выходы, данные элементного анализа соединений (ПІ—VI)

.Ns	Вы-	Т. пл., °С (растворитель	Найдено, %			_	Вычислено, %		
соеди- нения	ход, %	для кристалли- зации)	C	Н	N	Формула	С	н	N
III	79	264	63.25	3.51	15.40	$C_{19}II_{12}N_4O_4$	63.30	3.33	15.56
IV	72	(толуол) 179 (этанол)	57.10	4.00	17.25	$C_{15}H_{12}N_4O_4$	57.60	3.85	17.90
V	68	304 (этанол)	51.74	2.60	18.10	$\mathrm{C_{13}H_{8}N_{4}O_{5}}$	52.00	2.67	18.67
VI	65	280 (ацетон)	42.70	3.26	22.38	$C_9H_8N_4O_5$	42.86	3.17	22.20

изводных 1,4-бенздиазепин-2-опов, в которых, в зависимости от природы заместителей в положении I, она достигает 11.3° [4].

Отдельные молекулы в кристалле, связанные плоскостью скользящего отражения a, объединены в цени системой водородных связей $N^{I}H$. . . $O^{I}N^{s*}$ 3.086 Å (длины связей N-H 1.00, $H \cdot \cdot \cdot \cdot O$ 2.31 Å; угол N-H-O 134°).

Кроме того, тот же атом водорода при N^1 участвует в образованив внутримолекулярной водородной связи $N^1H \cdot \cdot \cdot \cdot O^2N^2$ 2.622 Å (длины связей N-H 1.00, $H \cdot \cdot \cdot \cdot O$ 1.87; угол N-H-O 129°).

ТАБЛИЦА 2 НК спектры соединский (III—VI)

. Ni соединения	Полосы ИК спектра, см-1
111	3350 (=N-H); 1600 (=C=N-); 1590 (С-С аром.
IV	кольца); 1300, 1220 (—NO ₂); 780, 710 (—С—Н) 3300 (—N—Н); 1590 (С—С аром. кольца); 1590
v	(-C=N-), 1420, 1300 (-NO ₂) 3450, 3350 (-N-H); 1650 (-C=O); 1500, 1320
VI	(NO ₂); 1400 (С—С аром. кольца); 1250, 1130 (—С—N=) 3000 (—N—H); 2320 (—С—N); 1650 (—С—О); 1550, 1300 (—NO ₂)

Таким образом, протон при N в положении I участвует в двух водородных связях. Расстояния и валентные углы в гетероцикле в сравнении с полученными в медазепаме и его производных [5, 6] отличаются по некоторым связям. Так длины связей C^2-C^3 1.335; C^5-C^6 1.512; C^6-C^7 1.463; C^7-N^1 1.346 Å (соответствующие расстояния, приведенные в работах [5, 6], равны: 1.493—1.512, 1.479—1.492, 1.416—1.422 и 1.388—1.406 Å). Возможно, это связано с перераспределением электронной плотности из-за замены метильной группы на атом водорода у N^1 . Что касается углов в гетероцикле, то различия достигают 4—5°. Угол $C^7-N^1-C^2$ равен 128.1° по сравнению с 118.9—120.6° в медазепаме [5, 6]. Такой угол типичен для 1,4-бенздиазепин-2-ионов с атомом водорода в позиции I [7].

В случае торсионных углов различия достигают 40° для связи C6—C7— N¹—C² 20.0°. Более того, следует заметить, что во всех, кроме указанных в работах [8, 9], производных 1,4-бенздиазепинов эта всличина не превышает 40°. В работе [9] эта величина еще меньше (5.7°). Таким образом, соединения 2,3-дигидро-1,4-бенздиазепины более конформационно подвижны по сравнению с 1,4-бенздиазепин-2-онами.

Диэдрический угол между ароматическими циклами равен 116.4°. Нитрогруппы практически копланарпы бензогруппе, составляя с ней углы 3.7° (N^2) и 2.9° (N^3); между собой они составляют угол 4.4° . Такое расположение обеспечивает их π -сопряжение. По-видимому, копланарность группы в положении 9 обеспечивается внутримолекулярной H-связью.

Проекция структуры на плоскость сопряженного бензольного кольца и нумерация атомов в молекуле 7,9-динитро-5-фенил-1,2-дигидро-3*H*-1,4-бенздиазепина.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрофотометре Specord 75-IR в таблетках КВг в интервале измерения 4000—400 см⁻¹, призма КВг. Масс-спектры получены на масс-спектрометре МХ-1320 в режиме прямого ввода при иопизирующем напряжении 70 аВ и температурах на 40—50 °С ниже температур планления веществ. Хроматографический контроль осуществлялся на пластинах Silufol UV-254 в системе ацетон: гексан (1:3).

Для дифракционного эксперимента выбран кристалл соединения (IV), выращенный в толуольном растворе, размерами $0.15 \times 0.45 \times 1.1$ мм. Параметры элементарной ячейки уточнены на четырехкружном автодифрактометре РЭД-4 и равны: а 15.080(10), b 10.866(4), с 8.647(4) Å; γ 91.65(3)°. Пространственная группа $P2_1/a$, ρ (рент) 1.464 $r \cdot cm^{-3}$ для Z=4

состава С₁₅H₁₂N₄O₄.

Дифракционный эксперимент проведен на автодифрактометре РЭД-4 (Мо $K_{\rm g}$ -монохроматизированное излучение, sin $0/\lambda \leqslant 0.65$ Å $^{-1}$, ω -метод с постоянной скоростью сканирования 8 град/мин). Всего получено 1865 рефлексов с I (hkl) > 3 \circ (1), при пересчете к F (hkl) учитывался Lp-фактор, поглощение и экстинкции не учитывались. В расчете использовано 1730 ненулевых независимых рефлексов. Структура решена прямым методом по программе MULTAN. Из первого E-синтеза были выявлены все неводородные атомы структуры. Структура уточнена МИК в анизотропном приближении (атомы водорода, локализованные из данных разностного синтеза Фурье, уточнялись изотропно) с единичной весовой схемой до R 0.053.

Координаты базисных атомов структуры приведены в табл. 3, гео-

метрические параметры молекулы сведены в табл. 4 и 5.

1,3-Динитро-5-фенил-11*H*-дибенз [b, f]-1,4-диазепин (III). К раствору 0.01 моля соединения (I) в хлороформе добавляли раствор 0.012 моля о-фенилендиамина в хлороформе и кипятили при перемешивании 35 мин. После унаривания растворителя сухой остаток растворили в толуоле и кипятили 2.5 ч. Раствор фильтровали и охлаждали. На следующий день отфильтровывали випневые кристаллы. 7,9 - Динитро - 5 - фенил - 1,2 - дигидро - 3*H* - 1,4 - бенздиазепин (IV). К раствору 10 г соединения (I) в 150 мл хлороформа добавляли сразу при сильном перемешивании раствор 10 мл этилендиамина

ТАБЛИЦА З Координаты базисных атомов ($(\times 10^4)$) в беиздиазенине (IV)

Atom	x/a	yļb	zĮc	
C52 C54 C55 C56 C56 C57 C51 C70 C711 C72 C711 C72 C711 C72 C70 C70 C711 C72 C70 C70 C711 C72 C70 C70 C711 C72 C70	4709 (3) 4678 (3) 5608 (4) 5898 (3) 6060 (3) 6048 (3) 5362 (3) 5438 (3) 6128 (3) 6771 (3) 6775 (3) 4758 (3) 4990 (3) 4091 (3) 7506 (3) 8060 (2) 7559 (3) 6318 (3) 6090 (3) 6283 (4) 6718 (4) 6960 (4) 6768 (3) 4237 (35)	3113 (4) 2123 (4) 1675 (4) 811 (3) 1221 (4) 2555 (4) 3400 (4) 4609 (4) 4982 (4) 4155 (4) 2949 (4) 5539 (3) 6563 (3) 5285 (4) 4537 (3) 3774 (3) 5608 (3) 299 (4) 407 (4) -521 (5) -1550 (5) -1664 (4) -748 (4) 3720 (48)	1275 (5) 126 (6) —265 (6) —265 (6) —920 (5) 2268 (6) 2763 (5) 2284 (5) 2986 (5) 3936 (5) 4288 (5) 3741 (5) 2697 (5) 3285 (5) 1917 (6) 5276 (5) 5276 (5) 5633 (5) 5722 (5) 3464 (6) 5002 (6) 6052 (7) 5541 (7) 4028 (7) 2972 (7) 1068 (65)	
		` -'	(/	

в 70 мл этанола, перемешивали 20 мин, затем избыток этилендиамина отмывали водой (150 мл × 2), хлороформ упаривали в вакууме, а остаток кипятили в 150 мл толуола 1 ч с ловушкой Дина—Старка. Раствор фильтровали горячим. При охлаждении выпали оранжевые кристаллы.

ТАБЛИЦА 4 Межатомные расстояния в бенздиазепине (IV)

Длины св	Длины связей, Ä		зязей, Å	Длины связей, Å		
N1—C2 C2—C3 C5—C6 C8—C9 C6—C11 N2—O2N2 N3—O2N3 C51—C56 C54—C55	1.464 (6) 1.535 (8) 1.512 (6) 1.378 (7) 1.373 (7) 1.236 (6) 1.227 (5) 1.407 (7) 1.366 (9)	N ¹ —C ⁷ C ³ —C ⁴ C ⁶ —C ⁷ C ⁹ —C ¹⁰ N ² —C ⁸ N ³ —C ¹⁰ C ⁵ —C ⁵¹ C ⁵² —C ⁵³ C ⁵⁵ —C ⁵⁶	1.346 (6) 1.465 (7) 1.463 (6) 1.375 (6) 1.481 (6) 1.452 (6) 1.499 (7) 1.394 (8) 1.387 (7)	C58—C54 N1—HN1 N4—C5 C7—C8 C10—C11 N2—O1N2 C31—C52 C51—C52	1.00 (5) 1.269 (6) 1.449 (6) 1.393 (6) 1.234 (5) 1.233 (5) 1.380 (8) 1.384 (8)	

1,3 - Динитро - 5,6 - дигидро - 11H - дибена $[b,\ f]$ - 1,4- диазепин - 5 - он (V) получен взаимодействием раствора 0.05 моля соединения (II) в 50 мл метанола и 0.07 моля раствора o-фенилендиамина в 100 мл метанола при кипячении в течение 1 ч. После охлаждения отфильтровывали кристаллы красного цвета.

7,9 - Динитро - 1,2,4,5 - тетрагидро - 1H - 1,4 - бенздиазепин - 5 - он (VI) получен при кипячении в течение 1 ч раствора 0.05 моля соединения (II) в 50 мл метанола и раствора 0.07 моля этиленднамина в 100 мл метанола. Выпавший осадок отфильтровывали, промывали водой и высущивали.

таблица 5 Величины валентных и некоторых торсионных углов в бенздиазепипе (IV)

Углы, град	Углы, град
$\begin{array}{c} C^2-N^1-C^7\ 128.1\ (4)\\ C^7-N^1-H\ N^1\ 119\ (3)\\ C^2-C^3-N^4\ 109.9\ (4)\\ N^4-C^5-C^6\ 126.1\ (4)\\ C^6-C^5-C^5\ 117.1\ (4)\\ C^5-C^6-C^{11}\ 116.4\ (4)\\ N^1-C^7-C^6\ 124.3\ (4)\\ C^7-C^8-N^2\ 120.6\ (4)\\ C^8-C^9-C^{10}\ 118.6\ (4)\\ C^9-C^{10}-N^3\ 119.3\ (4)\\ C^6-C^{71}-C^{10}\ 121.7\ (4)\\ C^3-N^2-O^2N^2\ 120.9\ (4)\\ C^10-N^3-O^1N^3\ 118.8\ (4)\\ O^1N^3-N^3-O^2N^3\ 122.1\ (4)\\ C^5-C^{51}-C^{56}\ 118.1\ (4)\\ C^{53}-C^{52}-C^{53}\ 120.5\ (5)\\ C^{53}-C^{54}-C^{55}\ 120.8\ (5)\\ C^{55}-C^{56}-C^{51}\ 119.7\ (5)\\ \end{array}$	$\begin{array}{c} C^2-N^1-IIN^1\ 111.0\ (3)\\ N^1-C^2-C^3\ 111.8\ (4)\\ C^3-N^4-C^5\ 118.4\ (4)\\ N^4-C^5-C^5\ 116.7\ (4)\\ C^5-C^6-C^7\ 123.3\ (4)\\ C^7-C^6-C^{11}\ 120.2\ (4)\\ N^1-C^7-C^8\ 121.3\ (4)\\ C^7-C^8-C^9\ 123.7\ (4)\\ C^9-C^8-N^2\ 115.5\ (4)\\ C^9-C^{10}-C^{11}\ 121.0\ (4)\\ C^{11}-C^{10}-N^3\ 119.5\ (4)\\ C^8-N^2-O^{1N^2}\ 116.6\ (4)\\ O^1N^2-N^2-O^2N^2\ 122.3\ (4)\\ C^{10}-N^3-O^2N^3\ 118.9\ (4)\\ C^5-C^{51}-C^{52}\ 122.5\ (4)\\ C^{52}-C^{51}-C^{56}\ 119.1\ (5)\\ C^{52}-C^{53}-C^{54}\ 119.3\ (5)\\ C^{54}-C^{55}-C^{56}\ 120.2\ (5)\\ \end{array}$
N^{1} — C^{2} — C^{3} — N^{4} 81.1 C^{2} — C^{3} — N^{4} — C^{5} —68.2 C^{3} — N^{4} — C^{5} — C^{6} —4.7 N^{4} — C^{5} — C^{6} — C^{7} 42.6 C^{5} — C^{6} — C^{7} — N^{1} —4.9	$\begin{array}{c} N^4 - C^5 - C^{51} - C^{52} - 146.4 \\ N^4 - C^5 - C^{51} - C^{56} & 30.1 \\ C - C^5 - C^{51} - C^{52} & 35.6 \\ C^6 - C^5 - (5^1 - C^{56} - 147.9) \\ (5^6 - C^7 - N^7 - C^2 - 20.0) \end{array}$

Выводы

- 1. Взаимодействием 1,2-диаминов с производными 2-хлор-3,5-динитробензойной кислоты синтезированы 7,9-динитро-1,4-бензодиазепины и их бензо[b]аналоги.
- 2. Согласно данным рентгеноструктурного анализа, конформация 7,9-динитро-5-фенил-1,2-дигидро-3*H*-1,4-бенздиазепина *твистованная* лодка с практически копланарными с бензольным ядром нитрогруппами. Установлена большая конформационная подвижность 2,3-дигидро-1,4бенздиазепинов по сравнению с 1,4-бенздиазепин-2-онами.

ЛИТЕРАТУРА

- [1] Sternbach L., Archer G., Reeler E. J. Org. Chem., 1963, vol. 28, p. 3013. [2] Пат. 3538082, США. РЖХим., 1971, т. 14, И 464П.
- [3] Вогатский А. В., Андронати С. А., Головенко И. Я. Транквилизаторы. Киев: Наукова думка, 1980, с. 83.
- [4] Camerman A., Camerman N.— J. Am. Chem. Soc., 1972, vol. 94, p. 268—272. [5] Channont P., Hamor T., Martin I. L.— Acta cryst. (B), 1980, vol. 36, p. 898—902. [6] Gilli G., Bertolasi V., Sacerdoti M., Borea P. A.— Acta cryst. (B), 1978, vol. 34,
- p. 3793-3795.

- [7] Андронати С. А., Дворкин А. А., Коротенко Т. И., Воронина Т. А., Симо-ков Ю. А., Шибанова Т. А. ХГС, 1982, № 7, с. 985. [6] Butcher H. I., Tamor T. A. Acta cryst. (C), 1985, vol. 41, p. 1081—1083. [9] Petcher T. F., Widmer A., Maltzel U., Zeugner H. Acta cryst. (C), 1983, vol. 41, p. 909—912.

Физико-химический институт имени А. В. Богатского Академии наук Украинской ССР Одесса

Поступило в Редакцию 5 сентября 1986 г.