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The objectives for this report is to give a condensed summary of Generalized  

electron transport model [1, 2] which works well at the nanoscale as well as at 

macroscale for 1D, 2D, and 3D resistors in ballistic, quasi-ballistic, and 

diffusive linear response regimes when there are differences in both voltage and 

temperature across the device. 

The generalized expression for current can be easily written in two equivalent 

forms: 
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where “broadening” γ(E) relates to transit time for electrons to cross the resistor 

channel 
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D(E) – density of states with the spin degeneracy factor gs = 2 included, M(E) is 

the integer number of modes of conductivity at energy E,  the transmission 
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where λ(E) is the mean-free-path for backscattering and L is the length of the 

conductor, Fermi function 

    ( )/

1

1FE E kT
f E

e 



 (4) 

is indexed with the resistor contact numbers 1 and 2, EF is the Fermi energy 

which as well as temperature T may be different at both contacts. 

Equation (3) can be derived with relatively few assumptions and it is valid not 

only in the ballistic and diffusion limits, but in between as well: 

Diffusive: L >> λ;  T = λ/L << 1, 

Ballistic: L << λ;  T → 1, 

Quasi-ballistic: L ≈ λ;  T < 1. 

The LDL transport model can be used to describe all three regime regions. 

It is now clearly established that the resistance of a ballistic conductor can be 

written in the form 
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where h/q
2
 is fundamental Klitzing constant and number of modes M(E) 

represents the number of effective parallel channels available for conduction.  

This result is now fairly well known, but the common belief is that it applies 

only to short resistors and belongs to a course on special topics like mesoscopic 

physics or nanoelectronics. What is not well known is that the resistance for 

both long and short conductors can be written in the form 
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Ballistic and diffusive conductors are not two different worlds, but rather a 

continuum as the length L is increased. Ballistic limit is obvious for L << λ, 

while for L >> λ it reduces into standard Ohm’s law 
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Indeed we could rewrite R(E) above as 
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with a new expression for specific resistivity 
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which provides a different view of resistivity in terms of the number of modes 

per unit area and the mean-free-path.     

Number of modes  
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is proportional to the width W of the resistor in 2D and to the cross-sectional 

area A in 3D, ( )xv E  is the average velocity in the +x direction from contact 1 

to contact 2. For parabolic bands 
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the 1D, 2D, and 3D densities of states are given by 
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where A is the area of the 2D resistor, Ω is the volume of the 3D resistor,        

H(E – Ec) is the Heaviside step function. Then number of modes 
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where gv  is the valley degeneracy.  

Figure 1 shows qualitative behavior of the density of states and number of 

modes for resistors with parabolic band structure. 

 
Fig. 1. Comparison of the density of states D(E) and number of modes M(E) for 

1D, 2D, and 3D resistors with parabolic dispersion. 

For linear dispersion in graphene 

  ( ) FE k v k  ,  (9) 

where  +sign  corresponds  to  conductivity band with EF > 0 (n-type graphene), 

and –sign corresponds to valence band with EF < 0  (p-type graphene),  
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Density of states in graphene 
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and number of modes 
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Two equivalent expressions for specific conductivity deserve attention, one as 

a product of D(E) and the diffusion coefficient ( )D E  

  2 ( ) 1 1
( ) ( ) 1, ,

D E
E q D E

L W A


 
  

 
, (13a) 

where  2 2 1 1
( ) 1, ,

2 3
xD E E   

 
   

 
 

with τ(E) being the mean free time after which an electron gets scattered and the 

other as a product of M(E) and λ(E)  
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where the three items in parenthesis correspond to 1D, 2D, and 3D resistors. 

Although Eq. (13b) is not well known, the equivalent version in (13a) is a 

standard result that is derived in textbooks. Both eqs (13) are far more generally 

applicable compared with traditional Drude model. For example, these equations 

give sensible answers even for materials like graphene whose non-parabolic 

bands make the meaning of electron mass somewhat unclear, causing 

considerable confusion when using Drude model. In general we must really use 

eqs (13) and not Drude model to shape our thinking about conductivity.  

These conceptual equations are generally applicable even to amorphous 

materials and molecular resistors. Irrespective of the specific E(p) relation at any 

energy the density of states D(E), velocity v(E), and momentum p(E) are related 

to the total number of states N(E) with energy less than E by the fundamental 

relation 
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where d  is the number of dimensions. Being combined with (13a) it gives one 

more fundamental equation for conductivity 
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where electron mass is defined as 
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For parabolic E(p) relations, the mass is independent of energy, but in general 

it could be energy-dependent as for example in graphene the effective mass 
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Near-equilibrium transport or low field linear response regime corresponds to 

0lim( / )VdI dV  . There are several reasons to develop low field transport model. 

First, near-equilibrium transport is the foundation for understanding transport in 

general. Concepts introduced in the study of near-equilibrium regime are often 

extended to treat more complicated situations, and near-equilibrium regime 

provides a reference point when we analyze transport in more complex 

conditions. Second, near-equilibrium transport measurements are widely used to 

characterize electronic materials and to understand the properties of new 

materials. And finally, near-equilibrium transport strongly influences and 

controls the performance of most electronic devices. 

Under the low field condition let 
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where 0( )f E  is the equilibrium Fermi function, and an applied bias 

    1 2Δ / ( ) /F F FV E q E E q    (18) 

is small enough. Using Taylor expansion under constant temperature condition 
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and property of the Fermi function 
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one finds 
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The derivative of the Fermi function multiplied by kT to make it 

dimensionless 
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is known as thermal broadening function and shown in Fig. 2. 

 
Fig. 2. Fermi function and the dimensionless normalized thermal broadening 

function. 

If one integrates FT over all energy range the total area  
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so that we can approximately visualize FT as a rectangular pulse centered around 

E = EF with a peak value of ¼ and a width of ~ 4kT.  

The derivative 0( / )f E  is known as the Fermi conduction window function. 

Whether a conductor is good or bad is determined by the availability of the 

conductor energy states in an energy window ~  2kT around the 

electrochemical potential EF0, which can vary widely from one material to 

another. Current is driven by the difference f1 – f2  in the “agenda” of the two 

contacts which for low bias is proportional to the derivative of the equilibrium 

Fermi function (21). With this near-equilibrium assumption for current (1) we 

have   
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with conductivity  
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known as the Landauer expression which is valid in 1D, 2D, and 3D resistors, if 

we use the appropriate expressions for M(E). 

 References 

1. S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport, 

Hackensack, New Jersey: World Scientific Publishing Company, 2012. 

2. Ю. А. Кругляк. Наноэлектроника «снизу – вверх», Одесса, ТЭС, 2015.  


