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The problem of calculating diatomic alkaline metal (homo- and heteronuclear) molecules KM (M = Li, 

Na, K, Rb, Cs) is treated in terms of a pseudopotential approach in the framework of a formally exact 
model perturbation theory of Rayleigh-SchrOdinger type with a test zero-order potential. A Gell-Mann 
type local model potential is used as a zero-order potential The results of calculations of energy 
parameters, in particular, dissociation energies, are given; some of them were obtained for the first time. 
The calculation demonstrated that two major effects of second-order perturbation theory: polarizing 
interaction of valence particles across the core and mutual screening of particles must be taken into 
account to achieve an acceptable accuracy of calculations. 

INTRODUCTION 

Calculating the energy characteristics of diatomic molecules is still an important problem, because this 
information is essential for physocochemlcal applications [1-15]. Modern calculations of molecules widely use 
semiempirical and nonempMcal pseudopotential (PP) theories, primarily due to the efficient and simple procedure 
allowing for the innermost shell effect when explicitly describing a system in a valence approximation (see, e.g., [1-12]). 

Theories of two types are generally employed. The first (model PP) type uses a semiempirical model PP 
(imitating PP in a frozen core approximation) with parameters chosen such that experimental'data should be reproduced. 
These PP were actively employed in calculations of the parameters of diatomic molecules owing to their simple 
mathematical form and an acceptable accuracy of calculations of the energy properties such as the energies of Rydberg 
levels for a series of molecules, etc. At the same time, application of this effective method is problematic when reliable 
experimental data are lacking. The second type of PP theories are characterized by the absence of the requirement 
that the valence orbitals be orthogonal to a given set of core orbitals, and using these theories is reduced to essentially 
theoretical transformation of initial equations for valence electrons, i.e., actually to a change to a frozen core 
approximation. This means that the formal PP equations do not include the most important correlation effects such 
as core polarization and the energy dependence of particle interactions. It also seems promising to take into account 
exchange polarization effects in terms of density functional theory using one-particle exchange polarization PP. 

In several papers [12-14], exchange and correlation effects were included by complementing the model PP 
with potentials depending on the dipole c~d and quadrupole aq polarizability of the core. A disadvantage of this method 
is the necessity of previously finding ctd, crq (the accuracy of this calculation is generally low) and incomplete inclusion 
of the most important exchange correlation effects. Nevertheless, the wide experience in using model PP in molecular 
calculations demonstrated that these methods are occasionally accurate enough to reproduce the results of correct ab 
initio full many-electron calculations, in particular, the calculations for molecules containing atoms of the first two 
periods of the periodical table and transition metals [4-11]. A comparison between the results of the PP and best 
configuration interaction calculations shows that the average error of calculation of electron correlation effects using 
PP is --10% or more. 
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One-quasiparticle (with one electron above the core of filled electron shells) molecular alkaline ions 
M~', M = Li, Na, K, Rb, Cs [5, 8] seem to be the most suitable objects for application of PP methods. In case of 
several outer electrons (quasiparticles) in a system, the problem of accurately calculating electron correlation effects 
becomes very important, and the PP technique gives low accuracy of calculations without using correct methods for 
solving this problem (for details, see [3, 4, 15]). 

We believe that a very efficient and consistent procedure is constructing model PP in terms of Rayleigh- 
Schr6dinger perturbation theory (PT) including exchange correlation effects as higher-order effects and using a test 
zero-order PP. This was at least realized in the theory of calculations of atoms, ions, and molecules [13-30]. 

Here we deal with the problem of calculating diatomic alkaline metal (homo- and heteronuclear) molecules 
KM (M = Li, Na, K, Rb, Cs) by the PP method in terms of model PT. This problem is currently of great interest since 
data about these molecules are relevant for some applications, including plasma chemistry, etc. [2, 5]. The model 
Hamilton?an of the system is constructed in terms of Rayleigh-Schr6dinger type PT with a test zero-order PP [/3-17]. 
A Gell-Mann type local model potential is used as zero-order PP [2]. 

Two major effects of second-order IT:  polarizing interaction of valence particles via the core and their mutual 
screening are important for achieving an acceptable accuracy of calculations. This paper uses original procedures for 
calculating these effects. It is shown that using empirical information about simple ions in calculations of the 
corresponding alkaline molecules in terms of zero-order PT with a zero-order PP increases the accuracy of calculations 
without making additional computational efforts. 

1. CALCULATION PROCEDURE. ZERO-ORDER APPROXIMATION 

In the framework of the PP approach, the problem on calculating molecules of M 2 type (M = Li, Na, K, Rb, 
Cs) may be reduced to a problem of calculating a system of two outer electrons (quasiparticles) moving in the field 
of ions of noble gas type atoms M+-M + forming a core [13, 15]. 

The ground state of the system, which is a state with two quasiparticles over the core, in a secondary quantization 
representation is 

~ ++ = C ~  a t % %, 

where a + is the creation operator of a particle over the core; oP 0 is the state of the core; C is the coefficient taking 

into account angular symmetry. The electronic Hamiltonian of the system is 

H = 2 ti a+ai + 2 Fij a+a: + 2 Fijkl a+a:a k al, 
i ij ijkl 

where e i are one-quasiparticle energies: 

Fi: = - ~. f d 3r ~oi(r)VM(rio) ~,j(r), 
a=a,b 

Fijkl = f f d r l 3 d r  3 ~0i(rl) ~j(r2)rl  # 90k(r2) ~ol(rl)- 

Here gM(rio) is a one-particle model PP imitating the potential of the core in which the quasiparticles are moving. 

The interaction energy E 0 between the M + ions of the core is defined as 

Zo = Zg / R, 

where R is the internuclear distance; Za c, Zff are effective charges ([31-35]). The procedure for correct determination 

of Z c is given, for example, in [31]. As a model potential V M we took a Gell-Mann type local potential [5, 8]: 

VM --_ _ !  "t- A___ e_2kr, (1) 
r r 
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TABLE 1. Parameters of the Test Model Potential V M (au) and Experimental 
Ionization Energies E of Alkaline Atoms (eV) 

Atom A k - E  

Li 
Na 
K 

Rb 
Cs 

1.287 
1.826 
1.989 
1.640 
1.672 

0.422 
0.536 
0.449 
0.358 
0.333 

5.39 
5.14 
4.32 
4.18 
3.88 

where A, k are the parameters of the potential usually tested with respect to the experimental ground-state energies 
of alkaline atoms (Table 1). A correct molecular model PP is represented as a sum 

V M = VM(ra, Oa, ~Oa) + VM(rb, Ob, 79b). (2) 

A consistent PT method with zero-order PP must use the eigenflmctions of the known quantum mechanical 
two-center problem with the potential V M as zero-order functions [35]. Below this is realized for the K 2 molecule as 
one of the calculation variants. Earlier, we dealt with the two-center problem (see [13] and also [18, 33]). The 
Rayleigh-Ritz variational principle is employed as the second variant of calculation. A test wave function is the 
function [8] 

W(2,/~) = (R 2)he -(aR2+flRu), (3) 

where 2, kt are the standard elliptical coordinates, 2 = (ra + to ) /R ,  1 <_ 2 <-. ~; lx = (ra - r b ) / R ,  - 1  _</~ _< 1; a, fl are 

the variational parameters determined by minimization of the ground state energy; n is an integer chosen such that 
the best energy is obtained (for details, see [81). 

The third variant of calculation virtually coincides with the second one, except that the parameters a, fl, n are 
chosen such that the experimental dissociation energy of the corresponding M~- ion is reproduced. Thus the M 2 system 
is calculated in two steps: 1) constructing a zero-order model using empirical data for determination of the PP 
parameters; 2) calculating various nth-order PT corrections with the aid of Rayleigh--Schr6dinger type PT with effective 
allowance for exchange correlations effects as higher-order PT effects using the corresponding one- and many-particle 
PP. The perturbation operator is 

HpT = E E [riT1 -- VM(ria)l, (4) 
o ij 

where a, i, j are the s,,mmation indices over the nuclei and electrons, respectively. 

2. CALCULATION PROCEDURE. HIGHER-ORDER PT CORRECTIONS 

A P T  series for a secular operator matrix was constructed and methods of summing the diagrams for the 
matrix were considered in [13, 18]. The terms of the series were represented as contributions of Feymnan diagrams, 
which were classified according to the number of terminal lines. In agreement with this classification, the matrix element 
M of the secular operator was represented as 

MO1 = M ~  ) + M ~  ) + ... + M~  ), 

where i is the total number of quasiparticles; M (°) is the contribution of vacuum diagrams (without terminal lines); 

M (1) is the contribution of one-quasiparticle diagrams (one pair of terminal lines), M (2) is the contribution of 

two-quasiparticle diagrams (two pairs of terminal lines), etc. The contribution M (0) determines the energy of the core. 

The contribution M (1) equals the sum of one-quasiparticle states el. 
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First order PT Second-order PT 

Vacuum 0 Q 

I I One-particle _t_ t 

' T T_ T Two-particle I I 
,I • I | 

T T "l~lC I' I~  I A =  B =  I 

Fig. 1. Main Feynman diagrams of perturbation theory with a 
model zero-order potential. The diagram corresponding to V M 

¥ 

(vertex _i.. ) is nearly completely compensated by the diagrams 
? I " with Hartree-Fock insertions ( _i_,~ ) m all orders of perturbation 

theory; A and B are the direct and exchange polarization diagrams, 
respectively, and C is a ladder-type diagram. 

In first-order PT one should calculate only the contributions of two-quasiparticle first-order diagram~ which 
take into account direct Coulomb interactions of quasiparticles. The desired first-order correction equals the interaction 
energy of the quasiparticles zXE (1) and is expressed in terms of the matrix elements of normal type on the zero-order 
wave functions. For the r~  1 operator here, as usual, we employ Neumatm's expansion into first- and second-order 
augmented Legendre polynomials and spherical harmonics (for details, see [35]). We note that the two-particle diagrams 
with a compensating term in HpT(VM ) are absent in first-order PT but appear in second-order PT; however, as shown 
by Tolmachev, their contributions are largely compensated by the contributions of the diagrams with self-energy additions 

[22-251 . 
Below we consider second-order diagrams A, B, C (Fig. 1) for which the calculation must be fulfdled. In the 

theory of many-electron systems, correlation corrections are generally applied by adding configurations, i.e., by expanding 
the secular matrix. The additional configurations may be classified into two groups: 1) states with excitation of electrons 
from the core: states with one vacancy in the core and three electrons over the core; imposing these states means that 
polarizing interactions of quasiparticles with each other via the polarized core are taken into account (second-order 
diagram~ A, B, Fig. 1), 2) states corresponding to exaltation of one of the outer quasiparticles, the number of outer 
particles remaining the same; imposing these states defines the mutual screening effect of the outer particles 
(second-order diagram C, Fig. 1). These two types of state give a second-order PT correction: 

We note that this additive classification is possible only in second-order PT; in higher orders, terms defining 
the interference of these effects will appear. Imposing the second-type states would lead to calculations of very 
cumbersome matrix elements. The second-type states may be taken into consideration in the secular matrix by expressing 
z ~  (1) for the matrix element. However, it may be necessary to take into account the whole continuum of high-order 
states for achieving the desired accuracy. 

An effective technique for calculating the ftrst- and second-type states without expanding the secular matrix 
(and taking additional computational efforts) is suggested in [26-29] (also see [15-19]). This method involves addition 
of the polarization operator, defining the interactions of outer particles via the polarized core, to the Coulomb particle 
interaction operator. 

The matrix elements of the polarization operator [26, 13] 

arpol(rl, r9 =X{fd3rplci3(r)/ Irl -rl  Ir-r21-[fd3rpcV3(r)/ Iq -rlfd3rplc/3/ Ir-r21l/ fdarplc~. (r)} (5) 

are diagram polarization contributions (Fig. 1). Here X is a numerical coefficient (its calculation procedure is described 
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in [26]); Pc is the electron density of the core neglecting outer quasiparticles. To calculate the polarization correction, 

for Pc we used an ansatz: Pc = Pa + Pb, and the densities Pa,b were further defined in much the same way as done in 

[13]. The general calculation procedure for AE(~  is given in [26] (also see [27]). 

We note that the angular parts of the matrix elements rl~ 1 and ,.~r(r 1, rE) coincide; therefore, applying the 
correction AE(~I amounts to modifying the radial integrals entering into the expression for AE (1). Due to the introduction 
of "~pol, the problem is reduced to the problem on two particles interacting via the potential [r121 + ~ol( r l ,  r2) ] to all 
accuracy of second-order FT. The mutual screening effect of outer particles may be included in the calculation by 
adding a screening potential Wsc r (arising from the presence of the second particle) to the potential of interaction of 
the outer electron with all electrons of the core in the zero-order Hamiltonian. The desired potential Wsc r is chosen 
such that 

(1~ Otriol) = (It ' ll),  
17 

where 0 is a potential parameter (see below). Here the matrix elements are calculated on the zero-order wave functions 
with a test model potential. There are alternative variants for calculating the screening effect [27-33]. Introduction of 
W into zero-order PT allows one to effectively calculate ladder-type diagrams in all orders of PT (Fig. 1). 

3. RESULTS OF CALCULATION 

Here we give the results of calculations of dissociation energies D e of the equilibrium states R e of some diatomic 
alkaline metal dimers KM (M -- Li, Na, K, Rb, Cs) using the developed Rayleigh-Schr6dinger type PT method with a 
test zero-order model potential. Table 1 gives parameters A, k of potential (1) tested with respect to the empirical 
energies of the ground state of alkaline atoms [1, 13]. 

Table 2 lists the test values of the parameters a, fl, n, N (N is the normalization constant) of the zero-order 
wave function found by the variational method for the corresponding molecular ions M~- (using the mlnlmiTation 
procedure). Naturally, fl = 0 in the homonuclear variant and fl ~ 0 in the heteronuclear variant. Table 2 also lists the 
values of the 0 parameter of the screening potential Wsc r- 

The results of dissociation energy calculations for the potassium dimer are given in Table 3 in three variants: 
1) zero-order approximation is determined by solving the quantum mechanical two-center problem; 2) test function 
with variationaUy determined parameters is used as a zero-order wave function (Table 2); 3) test function with the c~ 
parameter chosen such that the experimental value of the dissociation energy of K~- is reproduced is used as a 
zero-order wave function. In all variants, exchange correlation effects are taken into account as described above. 

Table 3 also contains the calculated dissociation energies of other diatomic alkaline molecules. For comparison, 
Table 3 gives the available literature data for calculations by other methods, in particular, by different versions of the 
PP approach using Gaussian, Phiilips-Kleiman, and Gell-Mann type PP and wave functions in Gaussian form, 
Heitler-London ansatz with Slater orbitals, multicontigurational, approximated natural orbitals, density functional theory, 

TABLE 2. Parameters a, fl, n, 0, N (N is the normalization constant), Equilibrium Distances Re, and Dissociation 
Energies of Ions D e (all values are given in atomic units, D e in eV) 

Ion ct fl  n D e R e N 0 

KLi~- 

Iq- 
rag 
KCs~" 

RFr~" 

0.5722 

0.5332 

0.4940 

0.4836 

0.4784 

0.4693 

0.0584 

0.0473 

0 

0.0538 

0.0587 

0.0652 

0.73 

1.03 

0.78 

0.63 

6.90 

7.30 

7.90 

8.21 

8.34 

8.63 

0.1165 

0.1249 

0.1444 

0.1216 

0.1163 

0.1112 

0.7403 

0.7648 

0.7983 

0,8012 

0.8197 

0.8292 
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TABLE 3. Dissociation Energies (eV) of Alkaline Dimers KM (M = Li, Na, I% Rb, Cs, Fr) Calculated in This Work 
by the PT Method and Using Other Approximations and Available Experimental Data 

a 

1.05 
0.63 
0.52 

b 

1.57 
0.90 
0.64 

0.15 
0.09 0.12 

e 

0.24 

0.24 

f 

0.89 

0.46 

hl 

0.77 

0.62 
0.53 
0.51 
0.47 
0.44 

M(2) 

LiK 
NaK 
K2 

RbK 
CsK 
FrK 

h2 

0.71 
0.55 
0.58 
0.45 
0.41 
0.37 

h3 k 

0.60 
0.54 0.49 
0.48 
0.44 

0.54 

Note: a) experimental data; b) Gaussian PP and model wave functions; c) Gell-Mann potential and Gaussian 
model wave functions; d) Gell-Mann potential and Heitler-London ansatz with Slater orbitals; e) Hartree-Fock 
potential + exact philllps-Kleiman PP and Heitler-London ansatz with Slater orbitals; core polarization correction is 
introduced as an effective potential; f) model PP and 13-configurational wave function; g) model PP and configuration 
interaction approximation using approximate natural orbitals; h) this work; 1, 2, 3 - variants of calculation (see text); 
k) semiempirical PT (with fitting of D e to experiment); 1) local density approximation in density functional theory. 

and multiconfigurational approximation [1-11, 13, 35]. There is good agreement between the results of our calculations 
and the available empirical data. For several molecules, the energies were obtained for the first time. 

The most important aspect of this calculation is an accurate inclusion of the polarization interaction of the 
outer quasiparticles via the core and mutual screening of the particles. Due to inclusion of these effects in the framework 
of PT, the results obtained here are more accurate than the data of previous calculations. 

An analysis of the calculation of the dimer K 2 in the three versions shows that using the eigenfunctions of the 
two-center problem as wave functions in the zero-order approximation leads to more accurate results than using model 
wave functions with variational parameters a, ft. Fitting the a parameter of the wave function to the experimental value 
of the dissociation energy of K~" using the third version leads to a more exact value of D for K 2 than in the case of 
variational determination of a. This is probably explained by using empirical data on a simpler related system in 
zero-order PT, which is well known in the theory of calculations of atoms and ions in the framework of an analogous 
approach [26-30]. In terms of diagrams this means more complete allowance for the corresponding correlation diagrams. 

In conclusion we emphasize that the calculation scheme of our approach provides for the possibility of using 
ab initio PP in zero-order PT, as done previously for atomic systems [28-30]. Due to this, our method may be applied 
to diatomic systems for which experimental spectral and structural data are lacking. This problem as well as the new 
principle of choosing a basis of PT with a test zero-order PP based on the Gell-Mann-Low adiabatic formalism [28] 
(which is of great interest for relativistic quantum chemistry) will be treated elsewhere. 

This work was supported by ISSEP grant No. SPU 071013-1997 (A.V.G.). 
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