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Based on a pseudopotential approach within the model, formally accurate perturbation theory of  the 

Rayleigh-Schr'~dinger type with a zero-approximation priming potential, a problem of  calculation of some 

alkaline diatomic molecules is considered in homo- and heteronuclear variants of Na2 and RbM ( M = Na, 

I2, K, Rb, Cs ). The results of calculation of the energy parameters, in particular, the dissociation energies, 

are given; some of the data were obtained for the first time. The results of the. calculation for the energies 

of Rydberg states n l y~ (n  = 4-6) and spectroscopic constants of the Na dimer are given. The calculation 

demonstrated the important role, in attainment of acceptable accuracy, of two basic 2nd order effects in the 

theory of perturbations, s the effect of polarization interaction of valence particles through the core and 

the effect of their screening by one another. For Rydberd states, the contribution of core excitations turns 

out to be important. 

Key words: pseudopotential, perturbation theory, polarization of the core, Rydberg state, dimer of  an alkali 
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Introduction. Calculation of the spectroscopic parameters of diatomic molecules is as before, an urgent 
problem due to the importance of the corresponding information for a number of optical applications. In particular, 
information on the spectroscopic characteristics of alkaline dimers are of special interest for laser spectroscopy, 
creation of laser sources of continuous radiation, etc. [1-4]. This problem is of current interest also from the 
viewpoint of further development of modern computational methods for diatomic molecules [5 ]. The very common 
methods of model potential and pseudopotential (PP) were used intensively in calculations of light alkaline dimers 
[6-13 ]. All the same, the rich background of experience acquired in applying PP in molecular calculations showed 
that PP methods are capable of reproducing, sometimes with high enough accuracy, the results of correct ab initio 

total multielectron calculations, in particular, as far as the molecules containing the atoms of the first two periods 
of the periodic table and transition metals are concerned [1-10]. A comparison of the results of PP-calculations 
with the best calculations by the configuration interaction method shows that PP methods give a calculation error 
in computation of the effects of electron correlation on average of about 10% and greater. It seems that the most 
suitable objects for applying the PP methods are single-quasi-particle (i.e., one electron above a core of filled 
electron shells) molecular alkaline ions of the form M~', M = Li, Na, K, Rb, Cs [5, 8 ]. If a system has several outer 
electrons (quasi particles), the problem of accurately accounting for interelectron correlation acquires very great 
importance, and without the use of correct methods for its solution, PP methods may fail to give a high accuracy 
of calculation [2, 3, 5 ]. One of the weU-known methods of accounting for exchange-pelarization effects is provided 
by density functional theory, but in many cases the accuracy of calculation is far from the spectroscopic accuracy. 
In a number of works [9, 12 ], the effects of exchange and correlation were taken into account by adding a model 
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PP (MPP) with potentials that depend on the dipole ad and quadrupole czq polarizabilities of the core. The 

drawbacks of the method comprise the necessity of preliminary determination of a d and aq (as a rule, the accuracy 

of their calculation is not great) and incompletely accounting for the most important exchange-correlation effects. 

In our opinion, a very effective and successive procedure is to construct MPP within the framework of 
Rayleigh-Schr'cklinger perturbation theory (PT) with effective consideration of exchange-correlation effects as 

higher-order effects and with a priming PP of zero approximation (ZA). At least, such a technique has been realized 

with success in the theory of calculation of atoms, ions as well as molecules [13-31 ]. 

In the present work, on the basis of the PP method within the framework ot the PT model, a problem of 

calculation of alkaline diatomic molecules is considered in homo- and heteronuclear variants of RbM (M ,- Li, Na, 
K, Rb, Cs). The model Hamiltonian of the system was constructed within the framework of Rayleigh-Shrikiinger 

PT with priming PP of ZA [13, 15 ]. As a model Hamiltonian, a local Hellman-type model potential was used [6 ]. 

To take into account the two basic 2rid-order effects of PT (polarization interaction of valence particles through 

the core and their screening by each other), original procedures were used. The use of empirical information about 

simpler corresponding ions for calculating alkaline molecules in the zero approximation of PT with PP of ZA made 

it possible to increase the accuracy of calculation without additional computations. 
Within the framework of the PP-approach, the problem of calculation of RbM-type molecules can be 

reduced to the problem of calculation of a system consisting of two outer electrons (quasi particles) moving in the 

field of ions of the type of the atoms of noble gases M + - M  + that form the core [13, 15]. The main state of the 
system (the state with two quasi particles above the core in the representation of secondary quantization) has the 

form 

= %t % % ,  

where ,,+ is the creation operator for a particle above the core; ~o  is the state of the core; c is the ~ f f i c i e n t  that 

takes into account the angular symmetry. The electron Hamiltonian of the system has the form 

H = ~.. t i a + a i + 
i 

where ei are the single-quasi-particle energies; 

= -  2 I  
O'==Q,b 

+ + + 
Fl ja + r + ~ Fijkla i aj akal, ij ~pa 

d3 i (q) v M ; 

Here VM(r/o) is the single particle MPP that imitates the potential of the core in which quasi particles move. 

The interaction energy Eo of the M + ions of the core is defined in the form 

c c 
E o = z a Z b / R ,  

where R is the internuclear distance; zCa and z~ are the effective charges [32-35 ]. The procedure for correct 
determination of z c is given, for example, in [32 ]. As the model potential I'M the following Hellman-type potential 

was used [5, 8 ]: 

V M = _  rl + rA exp ( -  2/or) , (1) 

where A and k are the parameters of the potential usually calibrated against the experimental energies of the basic 

state of alkaline atoms (see Table 1). The correct molecular MPP is presented in the form of the sum 
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TABLE I. Parameters of the Priming Model Potential VM (a.e.) and Experimental Ionization Energies E of Alkaline 

Atoms (eV) 

Atom 

Li 
Na 
K 
Rb 

Cs 

A 

1.287 
1.826 
1.989 
1.640 
1.672 

0.422 
0.536 
0.449 
0.358 
0.333 

- - E  

5.39 
5.14 
4.32 
4.18 
3.88 

vM = vM (ra, + v M (r b , 0 b , (2) 

For successive implementation of the developed method of the PT with ZA PP, the eigenfunctions of the well-known 

problem of two centers of quantum mechanics with potential VM should be used as ZA functions [35 ]. Below this 

will be realized for an Rb2 molecule as one of the variants of the calculation. The solution of a two-center problem 

was considered earlier [13, 18, 33 ]. The Rayleigh-Ritz variational principle is used as an alternative variant, 

whereas as a test wave function the following function was used [8 ]: 

Lv (,I, = (3) 

where ~ and ju are the ordinary elliptic coordinates r - (r a + rb)/R, I < ~ < ~; l~ - (r a -- rdO/R, --I </~ <I); a 

and ~ are the variational parameters determined by minimization of the energy of the ground state; n is an integer 

selected to obtain the best energy (for details see [8 D. The third variant of the calculation virtually coincides with 

the second one, except for the fact that parameters a ,  fl, and n are selected from the condition of reproduction of 

the experimental dissociation energy of the corresponding ion M~. The calculation of system M2 under investigation 
is divided into two stages: construction of the zero-order model approximation using empirical information for 

determining the PP parameters; calculation of corrections of various order with Rayleigh-gchrikt inger  PT with 

effective consideration of exchange-correlation effects as higher-order PT effects by using corresponding single- 

and multiparticle PP. As a perturbation operator, an operator of the form 

(4) 

is used, in which a, i, and j are the summation suffixes over nuclei and electrons. 

In [13, 18 ] a PT series was constructed for the matrix of a secular operator and techniques of summation 

of diagrams for the secular matrix were considered. The terms of such a series were presented in the form of 

Feynman diagrams contributions which were classified by the number of end lines. According to this classification, 

matrix element M of the secular operator was represented in the form: 

where i is the total number of quasi particles, M (~ is the contribution of vacuum diagrams (without end fines); 

M O) is the contribution of single-quasi-particle diagrams (one pair of end lines); M (2) is the contribution of two- 

quasi-particle diagrams (two pairs of end lines), and so on. The contribution of M (0) determines the energy of the 

core. The contribution of M (!) is equal to the sum of single-quasi-particle states e i. In the first order of PT,  one 

should calculate only the contribution of two-quasi-particle diagrams of the 1st order that take into account the 

direct Coulomb interaction of quasi particles. The 1st order correction sought is equal to the interaction energy of 

quasi particles AE (l) and is expressed in terms of ordinary matrix elements on ZA wave functions. For operator 

rl-2 l, one uses, as usual, the Neumann expansion in associated Legendre polynomials of the 1st and 2nd kind and 

in spherical harmonics [35]. We note that in the 1st order of PT, two-particle diagrams with the compensating 

term - V  a are absent in HpT, but such diagrams appear in the 2nd order, even though their contribution is 
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First order of PT 

Vacuum 0 

Single-particle 11 _ _ ~  

I 
Two-particle I 

Second order of PT 

? 
I 

1 

I I I I 
! I I _ I 

T T T ,71 q- -q -  
A = ~  S~ c--I_1 II 

Fig. 1. Basic Feynman diagrams of PT with model ZA potential; the diagram 
corresponding to VM (vertex 1) is almost completely compensated by the 
diagrams with Hartree-Fock insets (2, 3) in all PT orders; A, B are the 
straight and exchange polarization diagrams, C is the ladder diagram. 

substantially compensated by the contribution of diagrams with strictly energy insertions [22-24 ]. Then the 2hal- 
order diagrams A, B, C are considered (Fig. 1) for which the calculation is to be carried out. In the theory of 
multielectron systems, correlations are usually taken into account by the superposition of additional configurations, 
i.e., by expansion of a secular matrix. The additional configurations can be subdivided into two groups: 
1: states with excitation of electrons from the core (states with one vacancy in the core and three electrons above 
the core); the superlxmition of these states accounts for the polarization interaction of quasi particles with one 
another through the polarizable core (2nd order diagrams, Fig. 1, A, B); 2) states corresponding to excitation of 
one of the outer quasi particles, with the number of outer particles remaining unchanged; the superposition of these 
states describes the effect of outer screening of outer particles by one another (the 2nd-order diagram, Fig. 1, C). 
These two types of states give the correction of the 2rid order of PT: 

Note that such an additive subdivision is possible only in the 2nd order of the PT; in the higher orders 
terms appear that describe the interference of these effects. The superlx~ition of states of the second type would 
have led to calculation of very cumbersome matrix elements. In principle, the 2nd type states can be taken into 
account in a secular matrix by the expression of ~ ( l )  for the matrix element. However, it may turn out that a 
whole continuum of higher states must be taken into account to achieve the desired accuracy. An effective means 
for taking into accolmt the states of both the Ist and 2nd type without increasing the dimensions of the secular 
matrix (and without additional computations) was suggested in [24-28 ] (see also [15-19 ]). It consists in 
supplementing the Coulomb interparticle interaction operator with a polarization operator which describes the 
interaction of outer particles through a polarizable core. The matrix elements of the polarization operator, which 
has the form [13, 26] 

.3 1/3 
Fpol(rl, r2)= X f arpc (r)/[q -r I lr-r2l - 

I f  ,3 1/3 r ~3 1/3 ] . r  .3 1/3 t - ~rpc (")/Iq-"l j a r p c  (r)/Ir--r 21 . j a r p c  (,-) , (s) 
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TABLE 2. Values of Parameters a,  ~, n, 0, and N of Equilibrium Distances Re, and Dissociation Energies of Ions 

De 

Ion a ff n D e R e N 0 

Na~ 
NaRb~ 
KRb~ 
Rb~ 

Cs~b~ 

0.5548 

0.5865 
0.5249 
0.4836 
0.4731 

0.4624 

0.0603 

0 
0.0576 
0.0538 

0 

0.0516 

3 

3 
3 
3 
3 

3 

1.13 
0.60 

0.86 

7.20 

6.48 
7.53 
8.20 
8.40 

8.62 

0.1108 

0.3777 
0.1149 
0.1216 
0.1270 

0.1214 

0.7523 

0.7318 
0.7752 
0.8012 
0.8149 

0.8233 

Note: N is the normalization constant; the values of De are given in eV; the values of the remaining quantities are 

in a.u. 

are the contributions from the polarization diagrams (see Fig. 1). Here X is a numerical coefficient (the procedure 

for its determination is described in detail in [26 ]); Pc is the electron density of the core without consideration of 

outer quasi particles. In calculation of the polarization correction for the value o fpo  the relationpc •Pa +Pb was used, 

and thereafter the densities Pa,b were defined by expressions in the same way as in [43 ]. The general computational 

procedure for AE(2t is described in [26, 27 ]. Note that the corner portions of the matrix elements r]'21 and Fpol(rb 

rz) coincide, therefore accounting for the correction AE (2) is reduced only to modification of the radial integrals that 

enter into the expression for AE 0). The introduction of Fpol made it possible to reduce the problem to one concerning 

two particles that interact via the potential [r]'2 l + Fpoi(q, r2) ], accurate to within the second order of PT. Accounting 

for the effect of screening of the outer particles by each other can be done by supplementing the potential of the 
interaction between an outer electron and all the core electrons in the ZA Hamiltonian with an additional screening 

potential Wscr owing its origin to the presence of the second particle. The unknown potential Wscr is selected so that 

( [ y 0__ [ ) = ( [ ri-21 I ), where 0 is the parameter of the potential (see below). The matrix elements are calculated on 
a r i a  

ZA wave functions with the priming model potential. Other variants of accounting for the screening effect are also 

possible [32-35 ]. The inclusion of Wscr in the zero order allows one to take into effective account the ladder-type 

diagram in all orders of PT (Fig. 1). 
We shall give the results of the calculation on the basis of the developed Rayleigh-SchrSdinger method of 

PT with a priming model ZA potential of dissociation energies De, and equilibrium distances Re of a number of 

diatomic dimers of alkaline atoms RbM. The values of parameters A, k of potential C) ,  ~vhich were cafibrated by 
the empirical energies of the ground state of the alkaline atoms [1, 13], are presented in Table 1. Table 2 gives 

the priming values of parameters a,  /~, n and N of the ZA wave function that were found variationally for 
corresponding molecular ions M~" proceeding from the energy minimization procedure. It is natural that ~ = 0 in 
the homonuclear variant and/~ ;e 0 in the heteronuclear one. Table 2 also contains the values of parameter 0 of the 

screening potential Wscr. The results of calculation of the dissociation energy for dimer Rb in the three variants 
are listed in Table 3: 1) the ZA was found by solving the problem of two centers in quantum mechanics; 2) as the 

ZA wave function, a trial function with variationally determined parameters was used (see Table 2); 3) as the ZA 
wave function a trial function, was used with parameter a selected from the condition of reproduction of the 
experimental value for the dissociation energy of Rb~. In all of the variants, the exchange-correlation effects are 

taken into account identically following the procedure described above. Table 3 also contains the calculated results 
for the dissociation energies of other alkaline diatomic molecules. For comparison, Table 3 lists the literature data 
on the energies of some of the indicated molecules calculated by other methods: within the framework of different 
versions of the PP approach [I-11, 34, 35]. We note the good agreement between our calculated data and the 
available empirical results. For a number of molecules, the energies sought were obtained for the first time. A most 
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TABLE 3. Dissociation Energies (eV) of Alkaline Dimers M2 Calculated in the Present Work by the PT Method as 
Well as Within the Framework of Other Approximations, and Available Experimental Data 

Experimental data 
Gaussian PP and model wave functions 
Hellman potential and Gaussian model wave functions 
Hellman potential and Heit ler-London ansatz with Sleighter 
orbitals 
Har t ree-Fock potential + Phillips-Kleinman point PP and 
Hei t ler-London ansatz with Slater orbitals; polarization of the 
core in the form of the effective potential is taken into account 
Model PP and 13-configuration wave function 
Model PP and configuration interaction approximation with 
the use of approximate natural orbitals 
Present work: 
I variant of calculation; 
2 variant of calculation; 
3 variant of calculation (see the text) 
Semi-empirical PT (with fitting De to the experiment) 
Local density approximation in density functional theory 

M2 

RbLi Na2 RbNa RbK Rb2 RbCs 

0.74 0.58 0.49 
1.33 0.79 0.49 
0.25 0.09 0.02 

0.23 

0.25 

0.59 

0.66 0.74 0.58 0.52 0.48 0.45 
0.61 0.68 0.51 0.48 0.40 0.39 

0.74 0.57 0.46 
0.71 
0.75 

TABLE 4. Spectroscopic Constants of the Rydberg States Calculated in the Present Work and Also Within the 
Framework of Other Approaches and Experimental Data for the Excitation Energy Te, for the Rotational, Be, and 

Vibrational, to e , Constants 

State 

T e, 102 cm-  1 

- 1  
Be, c m  

-1  
toe, Cln 

a 

b 
C 

d 

a 

b 
c 

d 

" 

283.26 
285 
286 
285 

0.0899 
0.0838 
0.088 
0.093 

108.74 

107 
105 
106 

5'z " 
317.72 

319 
319 
320 

0.1136 
0.107 
0.110 
0.109 

109.41 

110 
113 
110 

325.62 
328 
327 
326 

0.1059 
0.101 
0.110 
0.107 

123.67 

119 
123 
123 

Note: a) experimental data [11 ]; b) Har t ree-Fock ab initio PP polarization of the core [14 ]; c) empirical PP + 

polarization of the core [12 ]; d) present work. 

important feature of this calculation is accurately accounting for the effect of the polarization interaction of outer 
quasi particles through the core and mutual screening of these particles, so that our results exceed in accuracy the 

calculations performed earlier. The analysis of calculation of the Rb2 dimer in three variants shows that use of the 

eigenfunctions of the two-centers problem as wave functions in ZA leads to more accurate results than with use of 
model wave functions with variational parameters a, ft. Fitting of parameter a of the wave function in the 3rd 
calculation variant by using the experimental value of the dissociation energy of Rb~" leads to a more accurate value 

of D e for Rb2 than in the case of variational determination of a. Obviously, this is explained by the well-known 
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fact from the theory of calculations of atoms and ions within the framework of a similar approach (see [23-28 ]) 
- the fact which is associated with the use of empirical information about a simpler related system in the ZA of 
PT. Diagrammatically this means fuller consideration of the corresponding correlation diagrams. The results of 
calculating the potential curves and spectroscopic constants for the Rydberg states ntY~ (n = 4-6) Na2 are presented 
in Table 4, which also lists the results of similar PP calculations on the basis of the ab initio PP method with 
calibration of the ground state into the Hartree-Fock wave function and calculations using empirical PP and with 
consideration of the polarization of the core by means of the Dalgarno PP, as well as the experimental data in [1 I, 
12, 14 ]. As seen from Table 4, the calculated data are in good agreement with the experiment. It is very important 
to emphasize the fundamental role of accounting for the effects of polarization of the core and screening in obtaining 
high accuracy. Inclusion of the screening potential also improves the convergence of the PT. 

In conclusion, we will emphasize that the computational scheme of our approach includes the possibility of 
use of the ab initio PP in the PT ZA as was done earlier for atomic systems [22-26 ]. This makes it possible to use 
our method for calculating diatomic systems for which there are no experimental data on the structure and spectrum. 

The work is carried out with partial support from the International Soros Support Educational Program 
(ISSEP), grant No. SPU 061016 (A, C, D). 
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