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Abstract. We present the theoretical foundations of an effective universal complex chaos-dynamical approach to
the analysis and prediction of atmospheric radon 222Rn concentration using the beta particle activity data of radon
monitors (with a pair of Geiger–Muller counters). The approach presented consistently includes a number of new
or improved available methods (correlation integral, fractal analysis, algorithms of average mutual information and
false nearest neighbors, Lyapunov’s exponents, surrogate data, nonlinear prediction schemes, spectral methods,
etc.) of modeling and analysis of atmospheric radon 222Rn concentration time series. We first present the data on the
topological and dynamical invariants for the time series of the 222Rn concentration. Using the data measurements
of the radon concentration time series at SMEAR II station of the Finnish Meteorological Institute, we found the
elements of deterministic chaos.
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1. Introduction

At the present time, studying regular and chaotic dynam-
ics of nonlinear processes in different classes of geo-
physical, chemical, physical and other systems is of
great theoretical and practical interest because of its very
important roles in both fundamental science and applied
technologies [1–36]. The importance of studying the
phenomenon of stochasticity or chaos in dynamical sys-
tems is due to a number of applications, including the
necessity of understanding chaotic features in different
geophysical (hydrometeorological, environmental, etc.)
systems. New fields of investigations of these systems
have been made possible by development of chaos and
dynamical systems theory methods [1–15]. In our pre-
vious papers [11–34] we presented some results and
review of new methods and algorithms for the anal-
ysis of different systems of environmental and earth
sciences, quantum (atomic and molecular) physics, elec-
tronics and photonics. The nonlinear methods of chaos
theory and recurrence spectra formalism have been
applied to study the stochastic and chaotic elements

in the dynamics of hydrometeorological, environmen-
tal and physical (namely, atomic, molecular, nuclear
systems in free state and in an external electromag-
netic field) systems. These studies allow to discover
unusual manifestations of chaos phenomenon. The stud-
ies concerning nonlinear behavior in the time series
of atmospheric constituent concentrations are sparse,
and their outcomes are ambiguous. In Ref. [35] the
chaotic elements in the O3 concentration time series
for the Cincinnati (Ohio) and Istanbul regions have
been found. Analysis of the NO2,CO,O3 concentra-
tion time series has been presented in Ref. [36]. The
detailed analysis of the NO2,CO,CO2 concentration
time series in the Gdansk region (Polland) has been
presented in Ref. [22]. This analysis found the ele-
ments of a deterministic chaos in the corresponding time
series. Moreover, it has been shown that even though a
simple procedure is used to construct the nonlinear pre-
diction model, the results are quite satisfactory. These
studies show that the methodology of chaos theory can
be applied and the short-range forecast by the non-
linear prediction method can be satisfactory. The time
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series of concentrations are however not always chaotic,
and chaotic behavior must be examined for each time
series.

In this paper we present the theoretical founda-
tions of an effective universal complex chaos-dynamical
approach to the analysis and prediction of the atmo-
spheric radon 222Rn concentration changes. We also
present the results of analysis of the atmospheric radon
222Rn concentration time series using the beta particle
activity data of radon monitors (with a pair of Geiger–
Muller counters) at SMEAR II station of the Finnish
Meteorological Institute [37]. The approach used con-
sistently includes a number of new or improved methods
of analysis: correlation integral, fractal analysis meth-
ods, algorithms of average mutual information and false
nearest neighbors, the Lyapunov’s exponents analysis,
surrogate data, nonlinear prediction schemes, spectral
methods, etc. (see details in Refs [11–34]). Data on
the topological and dynamical invariants for the stud-
ied time series of the 222Rn concentration are presented
and show evidence of deterministic chaos.

2. Universal chaos-dynamical approach in analysis
of chaotic dynamics of the radon concentration
time series

As many ideas of the present approach have been devel-
oped earlier and need only to be reformulated in regard
to the problem studied in this paper, we only need the
key finding of Refs [11–18,22–25]. Let us formally con-
sider scalar measurements s(n) = s(t0+ nΔt) = s(n),
where t0 is the start time, Δt is the time step, and n
is the number of measurements. Further it is necessary
to reconstruct phase space using, as well as possible,
information contained in the s(n). Such a reconstruc-
tion results in a certain set of d-dimensional vectors
y(n) replacing the scalar measurements. Packard et al.
[1] introduced the method of using time-delay coor-
dinates to reconstruct the phase space of an observed
dynamical system. The direct use of the lagged vari-
ables s(n + �), where � is some integer to be deter-
mined, results in a coordinate system in which the
structure of orbits in phase space can be captured. Then
using a collection of time lags to create a vector in
d dimensions,

y(n) = [s(n), s(n+�), s(n+2�),… , s(n+(d−1)�)], (1)

the required coordinates are obtained. In a nonlinear
system, the s(n + j�) are some unknown nonlinear
combination of the actual physical variables that com-
prise the source of the measurements. The dimension
d is called the embedding dimension, dE . In order to

perform the subsequent reconstruction of phase space,
it is very important to choose a proper time lag. If �
is chosen too small, then the coordinates s(n + j�) and
s(n + (j + 1)�) are so close to each other in numeri-
cal value that they cannot be distinguished from each
other. Similarly, if � is too large, then s(n + j�) and
s(n + (j + 1)�) are completely independent of each
other in a statistical sense. Also, if � is too small or
too large, then the correlation dimension of the attrac-
tor can be under- or over-estimated respectively [3]. It
is therefore necessary to choose some intermediate (and
more appropriate) position between the above cases. The
first approach is to compute the linear autocorrelation
function

CL(�) =

1
N

N
∑

m=1
[s(m + �) − s][s(m) − s]

1
N

N
∑

m=1
[s(m) − s]2

,

s = 1
N

N
∑

m=1

[s(m)]

(2)

and to look for that time lag where CL(�) first passes
through zero. This gives a good hint for the choice of
� such that s(n + j�) and s(n + (j + 1)�) are linearly
independent. However, a linear independence of two
variables does not mean that these variables are non-
linearly independent since a nonlinear relationship can
differ from a linear one. It is therefore preferable to
utilize an approach with nonlinear independence, e.g.
the average mutual information. Briefly, the concept of
mutual information can be described as follows. Let
there be two systems, A and B, with measurements ai
and bk . The amount one learns about a measurement
of ai from measurement of bk is determined within
information theory [3, 8, 9]

IAB(ai, bk) = log2(
PAB(ai, bk)

PA(ai)PB(bk)
), (3)

where the probability of observing a out of the set of
all A is PA(ai), and the probability of finding b in a
measurement B is PB(bi), and the joint probability of
the measurement of a and b is PAB(ai, bk). The mutual
information I of two measurements ai and bk is sym-
metric and non-negative, and equals zero only if the
systems are independent. The average mutual infor-
mation between any value ai from system A and bk
from B is the average over all possible measurements of
IAB(ai, bk),
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IAB(�) =
∑

ai ,bk

PAB(ai, bk)IAB(ai, bk). (4)

To place this definition to the context of observations
from a certain physical system, let us think of the sets of
measurements s(n) as the A set and of the measurements
a time lag � later, s(n + �), as the B set. The average
mutual information between observations at n and n+ �
is then

IAB(�) =
∑

ai ,bk

PAB(ai, bk)IAB(ai, bk). (5)

Now we have to decide what property of I(�)we should
select, in order to establish which among the various
values of � we should use in making the data vectors
y(n). One can recall that the autocorrelation function
and average mutual information can be considered as
analogues of the linear redundancy and general redun-
dancy, respectively, which was applied in the test for
nonlinearity. The general redundancies detect all depen-
dences in the time series, while the linear redundancies
are sensitive only to linear structures. Further, it can be
concluded that the nonlinear nature of the process possi-
bly results in chaotic growth in the concentration level.
The goal of determining the embedding dimension is to
reconstruct a Euclidean space Rd large enough so that
the set of points dA can be unfolded without ambiguity.
In accordance with the embedding theorem, the embed-
ding dimension dE must be greater than, or at least equal
to, a dimension of attractor, dA, i.e. dE > dA. How-
ever, two problems arise with working in dimensions
larger than really required by the data and time-delay
embedding [1–20]. First, many of the computations for
extracting interesting properties from the data require
searches and other operations in Rd whose computa-
tional cost rises exponentially with d. Second, but more
significant from the physical point of view, in the pres-
ence of noise or other high-dimensional contamination
of the observations, the extra dimensions are not popu-
lated by dynamics, already captured by a smaller dimen-
sion, but entirely by the contaminating signal [3,11,22].
Further it is necessary to determine the dimension
dA.

There are several standard approaches to reconstruct
the attractor dimension (see, e.g., [1–11]), but let us con-
sider in this study two methods only. The correlation
integral analysis is one of the widely used techniques
to investigate the signatures of chaos in a time series.
The analysis uses the correlation integral, C(r), to dis-
tinguish between chaotic and stochastic systems. To
compute the correlation integral, the algorithm of Grass-
berger and Procaccia [5] is the most commonly used
approach. According to this algorithm, the correlation

integral is

C(r) = lim
N →∞

2
N(n − 1)

∑

i,jl<i<j<N

H(r − ||yi − yj||),

(6)

where H is the Heaviside step function with H(u) = 1
for u > 0 and H(u) = 0 for u < 0, r is the radius of the
sphere centered on yi or yj, and N is the number of data
measurements. If the time series is characterized by an
attractor, then the integral C(r) is related to the radius r
given by

d = lim
r → 0,N →∞

logC(r)
log r

, (7)

where d is the correlation exponent that can be deter-
mined as the slope of the line in the coordinates log C(r)
versus log r by a least-squares fit of a straight line over
a certain range of r, called the scaling region. If the cor-
relation exponent attains saturation with an increase in
the embedding dimension, then the system is generally
considered to exhibit chaotic dynamics. The saturation
value of the correlation exponent is defined as the cor-
relation dimension, d2, of the attractor. The method of
surrogate data is an approach that makes use of the sub-
stitute data generated in accordance to the probabilistic
structure underlying the original data (see [2,11]). Often,
a significant difference in the estimates of the correla-
tion exponents, between the original and surrogate data
sets, can be observed. In the case of the original data, a
saturation of the correlation exponent is observed after
a certain embedding dimension value (i.e., 6), whereas
the correlation exponents computed for the surrogate
data sets continue increasing with increasing embedding
dimension.

It is worth considering another method for deter-
mining dE which comes from asking the basic ques-
tion addressed in the embedding theorem: one elim-
inated false-crossing of the orbit with itself which
arose by virtue of having projected the attractor into
a too low-dimensional space? By examining this ques-
tion in dimension one, then dimension two, etc., until
there are no incorrect or false neighbors remaining,
one should be able to establish, from geometrical con-
sideration alone, a value for the necessary embed-
ding dimension. The advanced version is presented in
Refs [16–18].

The Lyapunov’s exponents are the dynamical invari-
ants of the nonlinear system. In a general case, the
orbits of chaotic attractors are unpredictable, but there
is the limited predictability of chaotic physical system
which is defined by the global and local Lyapunov’s
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exponents. A negative exponent indicates a local aver-
age rate of contraction while a positive value indicates
a local average rate of expansion. In a chaos theory,
the spectrum of Lyapunov’s exponents is considered as
a measure of the effect of perturbing the initial condi-
tions of a dynamical system. In fact, if one manages to
derive the whole spectrum of the Lyapunov’s exponents,
then other invariants of the system, i.e., Kolmogorov
entropy and the attractor’s dimension, can be found.
The inverse of the Kolmogorov entropy is equal to an
average predictability. An estimate of the dimension
of the attractor is provided by the Kaplan and Yorke
conjecture:

dL = j +
∑j
�=1 ��
|�j+1|

, (8)

where j is such that
∑j

a=1 �a > 0 and
∑j+1

a=1 �a < 0
and the Lyapunov’s exponents �� are taken in descend-
ing order. There are a few approaches to computing
the Lyapunov’s exponents. One of them computes the
whole spectrum and is based on the Jacobi matrix of
the system. In the case where only observations are
given and the system function is unknown, the matrix
has to be estimated from the data. In this case, all the
suggested methods approximate the matrix by fitting
a local map to a sufficient number of nearby points.
To calculate the spectrum of the Lyapunov’s exponents
from the amplitude level data, one could determine the
time delay � and embed the data in the four-dimensional
space. In this point it is very important to determine
the Kaplan–Yorke dimension and compare it with the
correlation dimension, defined by the Grassberger–
Procaccia algorithm [5]. The estimations of the Kol-
mogorov entropy and average predictability can further
show a limit, up to which the amplitude level data can
be predicted on average. Other details can be found in
Refs [5–22].

3. Data on chaotic elements in time series
of the radon concentration and conclusion

The concentration of atmospheric radon 222Rn was
determined by measuring the activity of beta particles
in atmospheric aerosol using radon monitors. Mea-
surements of the radon concentrations at SMEAR II
station (61◦51′N, 24◦17′E, 181 m above sea level;
near the Hyytil, Southern Finland) was done by a
group of experts of the Finnish Meteorological Institute
(FMI) and was actually integrated into the system long-
term measurements (see details in Refs [37] and [38–
41] too). The continuous measurement was performed

during 2000–2006 on the seven heights (from 4.2 m
to 127 m). Technologically, for the detection of beta
particles, a device with a pair of the Geiger–Muller
counters, arranged in the lead corymbs, was used. Reg-
istration of the beta particles was cumulatively carried
out in 10-minute intervals. The effectiveness of a detec-
tion was 0.96 percent and 4.3 percent for beta radiation
from 214Pb and 214Bi respectively. Estimate of the 1-�
counting statistics is ±20 percent for a presumed sta-
ble a 222Rn concentration of 1 Bq∕m3 [37]. The mean
daily values of atmospheric 222Rn concentrations were
in the range from 0.1 to 11 Bq∕m3. In fact, the lower
limit of this range was provided by a hardware detec-
tion limit of the radon monitors. The corresponding data
meet the log-normal distribution with a geometric mean
of 2.5 Bq∕m3 (a standard geometric deviation of 1.7
Bq∕m3). The average geometric value for the daily aver-
age radon concentrations amounted to 2.3 to 2.6 Bq∕m3

per year. In general, during 2000–2006 both hourly and
daily values of a parameter, which corresponds to the
radon concentration, ranged from about 1 to 5 Bq∕m3.

In figure 1 is presented the typical time-dependent
curve of the radon concentration, received at SMEAR
II station [37].

The resulting Kaplan–Yorke dimension is very close
to the correlation dimension, which is determined by
the algorithm of Grassberger and Procaccia. Moreover,
the Kaplan–Yorke dimension is smaller than the dimen-
sion of embedding, which confirms the correctness of
the choice of the latter. In table 1 we list the results of
computing different dynamical and topological invari-
ants and parameters (time delay �, correlation dimen-
sion (d2), embedding space dimension (dE), Lyapunov’s
exponents (�i), Kolmogorov entropy (Kent), Kaplan–
Yorke dimension (dL), the predictability limit (Prmax)
and chaos indicator (Kch)) for radon concentration time
series (2001).

Therefore, using the uniform chaos-dynamical
approach we have carried out modeling and analysis of

Figure 1.The time-dependent curve of the atmospheric radon
concentration (see text).
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Table 1. Time delay �, correlation dimension (d2), embed-
ding space dimension (dE), Lyapunov’s exponents (�i), Kol-
mogorov entropy (Kent), Kaplan-York dimension (dL), the
predictability limit (Prmax) and chaos indicator (Kch) for radon
concentration time series (2001).

Year � d2 dE
2001 12 5,48 6
Year �1 �2 Kent
2001 0,0182 0,0058 0,024
Year dL Prmax Kch
2001 5,36 42 0,80

the atmospheric radon 222Rn concentration time series,
and received new data on the topological and dynamical
invariants for the 222Rn concentration time series. These
results show evidence of deterministic chaos. Gener-
ally speaking, the results are of great theoretical and
practical interest, as well as for applications in many
fields, such as environmental (environmental radioac-
tivity) and earth sciences, geophysics and physics, etc.
[7–16, 40–46].
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