А.В. Глушков, д.ф.-м.н., Н.Г. Сербов, к.г.н., И.А. Шахман, к.г.н., А.К. Балан, ст. преп., Е.П.Соляникова, ас. Одесский государственный экологический университет

ХАОС-ГЕОМЕТРИЧЕСКИЙ ПОДХОД К МОДЕЛИРОВАНИЮ ВРЕМЕННЫХ ФЛУКТУАЦИЙ КОНЦЕНТРАЦИЙ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В РЕЧНОЙ ВОДЕ

На основе нового хаос-геометрического подхода, базирующегося на методах теории хаоса и динамических систем, проведено численное моделирование характеристик флуктуационных временных трендов изменения концентраций нитратов в ряде водосборов Малых Карпат. Ключевые слова: методы теории хаоса, хаос-геометрический подход, мультифрактал, загрязнение водной среды

Разработка эффективных, высоко адекватно отражающих физику гидрологического цикла математических моделей, обладающих достаточно высокой степенью корректности и прогнозируемости, по-прежнему относится к числу ключевых задач современной гидрологии [1-9]. Хотя известные динамические модели расчета и прогноза характеристик речного стока, базирующиеся на использовании уравнений типа Сен-Венана, либо Навье-Стокса, обладают весьма важными достоинствами, их корректная реализация по-прежнему далека от удовлетворительного уровня. Более простые системные модели требуют, однако, более точной калибровки и более детального изучения внутренних симметрий искомых моделей. Между тем, несмотря на наличие огромного числа различных моделей, в том числе, для моделирования пространственно-временной структуры полей загрязнения водных сред (см., напр., [4-10] и ссылки там), их дальнейшее развитие представляется крайне важным и актуальным. В серии работах [10-18] был развит новый подход к описанию характеристик экологических и гидрометеорологических систем, базирующийся на многофакторном системном подходе, методах теории хаоса и динамических систем. Тестовые расчеты и сравнение теоретических данных с данными наблюдений, например, по расходам, соответствующим экстремальным паводкам 1996, 1997 г. на примере р. Дунай, продемонстрировали достаточную эффективность подхода и удовлетворительное согласие теории с данными наблюдений [12,13].

В данной работе новый хаос-геометрический подход, базирующийся на многофакторном системном подходе, методах теории хаоса и динамических систем, применен для численного моделирования временных трендов флуктуационных изменений концентраций загрязняющих веществ (нитратов) в ряде водосборов в пяти Карпат. Поскольку детальное изложение используемого метода регионах Малых представлялось в серии работ [9-18], перейдем непосредственно к изложению результатов изучения временных флуктуационных трендов химического загрязнения (на примере нитратов и аналогичных соединений) для ряда речных водосборов в пяти регионах Карпат. Исходными явились данные экспериментальных гидрологических исследований, выполненных сотр. Института гидрологии Академии наук Словакии) [19,20]. На рис. 1 приведены эмпирические данные (среднемесячные значения) по концентрациям нитратов $n_{\text{эмп}}$ в водозборе Svidnik (Ondava) за период 1969–1996гг. На рис. 2 приведены эмпирические данные (ежедневных замеров) $n_{\text{эмп}}$ в семи водосборах в течение гидрологического года 1988/1989. В [19] также приведены детальные данные (ежедневных замеров) по значениям концентраций нитратов в искомых водосборах за указанный выше период.

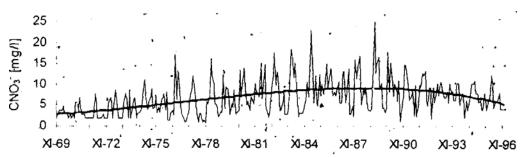


Рисунок 1 - Данные по эмпририческим (среднемесячные значения) значениям концентраций нитратов в водозборе Svidnik (Ondava) за период 1969 – 1996гг.

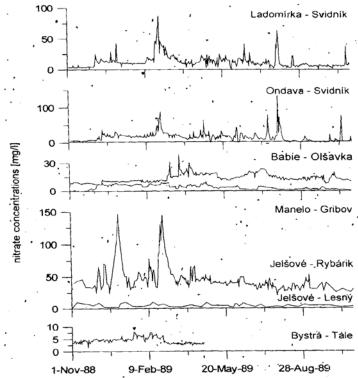


Рисунок 2 - Эмпирические данные (ежедневных замеров) $n_{\text{эмп}}$ в семи водосборах в течение гидрологического года 1988/1989 (из работы [16]).

табл. представлены эмпирические данные по максимальному, минимальному, среднему (месячные) значениям стока R и входному на ед. площади водосбора потоку нитратов L. Также в этой таблице приведены эмпирические $(n_{\scriptscriptstyle 3MR})$ [16], интерполяционные (n_{uhm}) [19] и расчетные (n_{pacy}) в рамках "black-box" модели (1)-(5) значения концентраций нитратов в водосборах Lesny и Rybarik [15]. Разумеется, химическое загрязнение речной воды является результатом взаимодействия многих факторов, включая гидрологический, геологический, антропогенный факторы. Уровень содержания и особенности распределения загрязняющих веществ в водной среде определяются совокупностью факторов, в частности, и близостью источников загрязнения, и физико-химическим свойствами веществ, и гидродинамическими, биогеохимическими, термодинамическими и др. условиями. Естественно, их следует рассматривать отдельно в каждом конкретном случае. Здесь для нас важно отметить надежно установленную корреляцию между величиной стока и значениями концентрации загрязняющих веществ, в частности, нитратов для всех экспериментально исследованных 14 водосборов в пяти регионах Карпат [19] (1969 – 1996гг.).

Таблица 1 — Максимальное, минимальное и среднее (месячные) значения стока R (мм), концентрации нитратов n (мг·л⁻¹; $n_{\scriptscriptstyle 2MN}$ - эмпирические данные [16]; $n_{\scriptscriptstyle 1MN}$ — интерполяционные значения [16]; $n_{\scriptscriptstyle pacq}$ — наша оценка в рамках "black-box" модели) и входного на ед. площади водосбора потока нитратов L (кг·месяц⁻¹) в водосборах Lesny и Rybarik.

Водосборы	Rybarik			Lesny		
	Макс.	Мин.	Среднее	Макс.	Мин.	Среднее
R	96,1	1,8	14,9	58,5	0,50	9,35
L	39,4	0,29	4,46	2,9	0,01	0,36
$n_{\scriptscriptstyle \mathfrak{IMN}}$	77,9	15,0	35,4	7,50	1,01	3,60
$n_{u_{Hm}}$	56,3	25,8	36,1	6,31	1,50	3,30
n_{pac4}	68,4	18,2	35,8	7,20	1,22	3,51

В табл. 2 приведены результаты по восстановлению хаотических аттракторов, параметра Готтвода и Мелбена (К) и глобальных размерностей Ляпунова. Как можно видеть, значение K во всех случаях превышают 0,6, то есть на рассматриваемые временные ряды влияет хаотическая динамика. Можно также отметить, что размерность Каплана-Йорка во всех случаях меньше использованной нами размерности вложения, что подтверждает правильность выбора последней. Отметим, вследствие разной дискретности временных рядов величин τ і \Pr_{max} измеряются во временних інтервалах. Наибольший уровень предсказуемости имеет временной ряд нитратов на водосборе Gidra: pod dedinou (14 временных интервалов, то есть 7 месяцев), а в других случаях предел предсказуемости несколько меньше, но все же является вполне достаточным для обоснованного краткосрочного (в смысле временных интервалов) прогноза загрязнения.

Таблиця 1 - Временная задержка (τ), кореляционная размерность (d_2), размерность вложения (d_E), размерность Каплана-Йорка (d_L), предел предсказуемости (\Pr_{max}) и показатель K для концентраций нитратов на водозборах Малых Карпат

Речка (Пост)	τ	d_2	d_E	d_L	Pr _{max}	K
	нитрати					
Ondava (Stropkov)	9	5,31	6	4,11	8	0,68
Gidra (pod dedinou)	16	5,13	6	5,87	14	0,82
Gidra (Pila)	20	5,82	6	5,17	12	0,75
Ladomirka (Svidnik)	10	3,88	4	3,12	7	0,71
Ondava (Svidnik)	10	3,65	4	3,27	7	0,80
Babie (Olsavka)	8	4,89	5	4,46	8	0,69
Manelo (Gribov)	7	3,71	4	3,66	9	0,65

В табл. 2 приводятся оценки некоторых характеристик успешности прогноза. Эти результаты могут рассматриваться как пример вполне удовлетворительного прогноза концентраций загрязняющих веществ в водосборах. Здесь можно отметить и тот факт, что хаос-геометрический метод достаточно хорошо работает в случаях, когда происходит увеличение концентраций, по крайней мере тенденции к такому

увеличению выявлены при прогнозировании. Последнее позволяет использовать его как альтернативу упрощенным, недостаточно достоверным общеупотребляемым методам. Кроме того, в данной работе применялся простейший подход (обычные средние взвешенные величины) к аппроксимации функциональной связи между прогностическим значением и прошлыми состояниями орбиты ат трактора. Потому, очевидно, можно надеяться, что использование более сложных методик, напр., полиномиальной зависимости или даже нейросетевого подхода, еще больше улучшит качество прогноза.

Таблиця 2 — Коэффициент корреляции (r) между фактическими и прогностическими рядами и среднеквадратичная ошибка прогноза (σ) временных рядов концентраций нитратов на водосборах Малых Карпат

Речка (Пост)	r	σ	
	нитрати		
Ondava (Stropkov)	0,91	3,8	
Gidra (pod dedinou)	0,95	6,9	
Gidra (Pila)	0,93	7,3	
Ladomirka (Svidnik)	0,86	6,5	
Ondava (Svidnik)	0,90	9,8	
Babie (Olsavka)	0,91	4,9	
Manelo (Gribov)	0,88	12,0	

Список литературы

- 1. *Кучмент Л.С, Демидов В.Н, Мотовилов Ю.Г.* Формирование речного стока.-М.: Наука, 1993.
- 2. *Islam M.N.*, *Sivakumar B*. Characterization and prediction of runoff dynamics: a nonlinear dynamical view// Adv.Water Res.-2002.-V.25, № 2- P.179-190.
- 3. *Grassberger P, Procaccia I*. Measuring the strangeness of strange attractors // Physica D.-1983.-Vol.9,№1-2.-P.189-208.
- 4. *Лобода Н.С.* Формализм функций памяти и мультифрактальный подход в задачах моделирования годового стока рек и его изменений под влиянием факторов антропогенной деятельности// Метеорология, климатология и гидрология.-2002.- №45.-С.140-146.
- 5. *Maftuoglu R.F.* New models for non-linear catchment analysis// J.Hydrol.-1984.-Vol.73.-P.335-357.
- 6. *Maftuoglu R.F.* Monthly runoff generation by non-linear models// J.Hydrol.-1991.-Vol.125.-P.277-291.
- 7. *Kothyari U.C.*, *Arvanmuthan V.*, *Singh V.P.* Monthly runoff generation using the linear perturbation model// J.Hydrol.-1993.-Vol.144.-P.371-379.
- 8. Stewart M.D., Bates P.D., Anderson M.G., Price D.A., Burt T.P. Modelling floods in hydrologically complex lowland river reaches// Journal of Hydrology (Elsevier; The Netherlands).-1999.-Vol.223.-P.85-106.
- 9. *Bunyakova Yu.Ya. and Glushkov A.V.* Analysis and forecasting effect of anthropogenic factors on air basin of industrial city.-Odessa: Ecology, 2010.-256p.
- 10. Глушков А.В., Балан А.К., Баланюк Е.П. Метод многофакторного системного и мультифрактального моделирования в задачах расчета экстремальных

гидрологических явлений//Ecology of Siberia, the Far East and the Arctic.-2003.-V.2.-P.113-118.

- 11. *Glushkov A.V.*, *Loboda N.S.*, *Khokhlov V.N.*, *Lovett L.* Using non-decimated wavelet decomposition to analyse time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation // Journal of Hydrology (Elsevier; The Netherlands). 2006. Vol. 322. No. 1-4. P. 14-24
- 12. Loboda N.S., Glushkov A.V., Khokhlov V.N. Using meteorological data for reconstruction of the annual runoff series over an ungauged area: Empirical orthogonal functions approach to Moldova-Southwest Ukraine region//Atmospheric Research.-2005.-Vol.77.-P.100-113.
- 13. *Глушков А.В., Балан А.К.* Многофакторный мультифрактальный подход в задачах моделирования стока и краткосрочном гидрологическом прогнозе (на примере р. Дунай) // Метеорология, климатология, гидрология.-2004.-№48.-С.392-396.
- 14. *Балан А.К.*, Метод мультифакторного системного моделирования в задачах расчета экстремальных гидрологических явлений// Метеорология, климатология и гидрология.-2002.-№45.-С.147-152.
- 15. Глушков А.В., Хохлов В.Н., Сербов Н.Г., Балан А.К., Бунякова Ю.Я., Баланюк Е.П., Низкоразмерный хаос во временных рядах концентраций загрязняющих веществ в атмосфере и гидросфере// Вісник ОДЕКУ.-2007.-N4.-C.337-348.
- 16. Khokhlov V.N., Glushkov A.V., Loboda N.S., Bunyakova Yu.Y. Short-range forecast of atmospheric pollutants using non-linear prediction method//Atmospheric Environment (Elsevier; The Netherlands).-2008.-Vol.42.-P.7284–7292.
- 17. Khokhlov V.N., Glushkov A.V., Loboda N.S., Serbov N.G., Zhurbenko K., Signatures of low-dimensional chaos in hourly water level measurements at coastal site of Mariupol, Ukraine// Stoch.Environment Res. Risk Assess. (Springer).-2008.-Vol.22,N6.-P.777-788.
- 18. *Глушков А.В., Хохлов В.Н., Препелица Г.П., Цененко И.* Временная изменчивость содержания атмосферного метана: влияние североатлантической осцилляции// Оптика атмосферы и океана.-2004.-Т.14,№7.-С.219-223.
- 19. *Svoboda A., Pekarova P., Miklanek P.,* Flood hydrology of Danube between Devin and Nagymaros in Slovakia.- Nat. Rep.2000 of the UNESKO.-Project 4.1.-Intern.Water Systems.-2000.-96P.
- 20. *Pekarova P., Miklanek P., Konicek A., Pekar J.*, Water quality in experimental basins.-Nat. Rep.1999 of the UNESKO.-Project 1.1.-Intern.Water Systems.-1999.-98P.

Хаос-геометричний підхід у моделюванні часових флуктуацій концентрацій забруднюючих сполук у річній воді.

Глушков А.В., Сербов М.Г., Шахман І.О., Балан А.К., Соляникова О.П.

На підставі нового хаос-геометричного підходу, який базується на методах теорії хаосу та динамічних систем, проведено чисельне дослідження характеристик флуктуаційних часових трендів змінення концентрацій нітратів в ряді водозборів у декількох регіонах Малих Карпат.

Ключові слова: методи теорії хаосу, хаос-геометричний підхід, мультифрактал, забруднення водного середовища

Chaos-geometrical approach in modelling the temporal fluctuations of the pollution substances concentrations in a river water.

Glushkov A.V., Serbov N.G., Shakhman I.A., Balan A.K., Solyanikova E.P.

It is carried out numerical modelling characteristics of the fluctuation temporal trends of changing nitrates concentrations in some catchments in a few regions of the Small Carpathians on the basis of the new chaosgeometrical approach combining the chaos theory and dynamical systems methods.

Kew words: methods of a chaos theory, chaos-geometrical approach, multi-fractal, pollution of water environment