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PREFACE 

 

Discipline "Quantum geometry, spectroscopy and dynamics of 

resonances" is an elective discipline in the cycle of professional training of 

postgraduate or PhD students (third level of education) in the specialty 104- 

Physics and Astronomys. 

It is aimed at Acquisition (providing) of a number of competencies, in 

particular, the achievement of relevant knowledge, understanding and the ability 

to use the methods of quantum geometry and dynamics of resonances, the ability 

to develop new and improve existing mathematical methods of analysis, 

modeling and forecasting based on fractal geometry and elements of the chaos 

theory of regular and chaotic dynamics ( evolution) of complex systems, the 

ability to develop fundamentally new and improve existing modern 

computational methods and algorithms of quantum mechanics, geometry and 

electrodynamics for analysis, modeling and prediction of the properties of 

classical and quantum systems with pronounced resonant behavior. mastering 

the modern apparatus of fractal geometry and chaos theory. 

Competencies that must be acquired or developed include; i) K11 Ability 

to analyze and identify a complex of major problems in a certain field of modern 

physics and, in particular, optics and spectroscopy of atoms, multi-charged ions, 

molecular, quantum, laser systems, solid bodies, as well as the atmosphere and 

ocean; Ability to develop new and improve existing methods of describing 

optical and spectroscopic properties of solids based on methods of quantum 

mechanics, quantum chemistry of solids, as well as methods of relativistic 

quantum theory; ii) K12 The ability to create physical, mathematical and 

computer models in optics and spectroscopy of physical systems with the 

implementation of effective algorithms and specialized software; Ability to 

acquire new fundamental knowledge in optics and spectroscopy of atoms, 

molecules, solids, laser systems, as well as geophysical systems (atmosphere 

and ocean). 

These methodical instructions are for self-studying work of the second-

year PhD students and tests performance in the discipline “Quantum Geometry 

and Dynamics of Resonances”.  

The main topic is a Resonance dynamics for quantum systems in an 

electromagnetic field. Methods for calculating energies and widths of Stark 

resonances  (Look Syllabus of the discipline, edition 2023) 



 

I. Topic: The adiabatic formalism of Gell-Mann and Lowe and the 

relativistic energy approach of Glushkov-Ivanov-Ivanova. 

Technique of moments of lines of multiphoton radiation 

absorption and Glushkov-Ivanov emission 

Topic: Адіабатичний формалізм Гелл-Мана та Лоу і релятивістський енергетичний 

підхід Глушкова-Іванова-Іванової. Техніка моментів ліній багатофотонного 

радіаційного поглинання та випромінювання Глушкова-Іванова (Л 2.8) 

1 Introduction 

In this paper we will focus on theoretical studying the resonant  multiphoton 

processes in atomic systems in an intense laser field and  consider the 

multiphoton processes in nuclear systems. We will present a new (in comparison 

with above indicated methods) consistent quantum approach to atomic systems 

in an intense realistic laser field, based on the relativistic energy approach (S-

matrix adiabatic Gell-Mann and Low formalism) and multiphoton spectral lines 

moments technique. In our opinion (see also, e.g., [1-31]), it is more natural and 

accurate to describe an atomic system interacting with a realistic laser field by 

means of the radiation emission and absorption spectral lines. It is important that 

their positions and shape fully determine a multiphoton spectroscopy of atomic 

system in a realistic laser pulse field. The radiation atomic lines can be described 

by moments of different orders Mn . Firstly, this idea was proposed by 

outstanding theoretical physicist Leonid Ivanov (see, e.g., [161-167]). The 

consistent theory of interaction of an atom with a Lorentzian shape laser pulse 

had been developed in Refs. [1-3].  

It should be noted that the first spectral lines moments are directly linked with a 

field shift and width of the corresponding multiphoton resonances. It is not 

difficult to see that the  main contribution into values of Mn is given by the 

resonant range. Further the values Mn can be expanded into perturbation theory 

(PT) series, although a perturbation theory may not be applicable for the 

transition probabilities in the resonant region. From the other side, application of 

the operator perturbation theory formalism with the physically reasonable 

distorted-waves approximation in the frame of the formally exact quantum-

mechanical procedure can solve this problem. The development of the theory for 

calculation of the multiphoton lines moments in the case of the Gaussian shape 

laser pulse was performed in Ref. [1-8].  

  In this chapter we will present the fundamentals of a consistent approach 

in a resonant multiphoton spectroscopy of atomic system in a realistic laser field 

and focus on computing multiphoton resonances parameters in the atomic 

systems interacting with the Lorentzian, Gaussian and soliton-like shape laser 

pulses. The effective technique, based on the Ivanova-Ivanov method of 



 

differential equations, for computing the infinite sums in expressions for a 

multiphoton resonance line moments will be schematically described. We begin 

our consideration within an adiabatic Gell-Mann and Low formalism.  In  

relativistic case the Gell-Mann and Low formula expresses the imaginary part of 

an energy shift E through the QED  scattering matrix, which includes an  

interaction as with a laser field as with the photon vacuum field. It results in 

possibility of an uniform simultaneous consideration of spontaneous and (or) 

induced, radiative processes and their interference.  As illustration we list the 

results of calculation of the multi-photon resonance shifts and widths in the 

caesium (three-photon resonant, four-photon ionization profile; transition 6S-6F; 

wavelength 1059nm) atoms and compare our results with available other  

theoretical and experimental data.  It should be noted that the analogous results 

for the hydrogen (three-photon resonant, four-photon ionization profile of 

atomic hydrogen; 1s-2p transition; wavelength =365 nm) were earlier presented 

[3]. In addition, we will schematically generalize our theory for the case of 

nuclear systems interacting with a superintense laser field, and for the first time 

present the quantitative estimates for the multiphoton resonance shift in the 

nucleus of iron 57Fe. 

2 Relativistic energy approach to multiphoton processes in atomic systems 

in laser field. Moments of radiation atomic lines  

 The theoretical basis of the relativistic energy approach in atomic 

spectroscopy was widely discussed earlier (see, e.g. [10-12, 162-190]) and here 

we will focus on the key topics following to Refs. [1-8]. Let us note that in the 

theory of the non-relativistic atom a convenient field procedure is known for 

calculating the energy shifts E of degenerate states. This procedure is 

connected with the secular matrix M diagonalization. In constructing M, the 

Gell-Mann and Low adiabatic formula for E is used. In relativistic version of 

the Gell-Mann and Low formula E is connected with electrodynamical 

scattering matrice, which includes interaction with a laser field. Naturally, in 

relativistic theory the secular matrix elements are already complex in the second  

perturbation theory (PT) order. Their imaginary parts are connected with 

radiation decay possibility. The total energy shift is usually presented in the 

form: 

 

                                                   Re Im ,E E i E  = +                                       (1a) 

 

                                                      Im / 2,E = −                                           (1b) 

 

where  is the level width (decay possibility).  



 

 As it was said, multiphoton spectroscopy of an atom in a laser field is fully 

determined by position and shape of the multiphoton radiation emission and 

absorption lines. The lines moments Mn are strongly dependent upon the laser 

pulse quality: intensity and mode constitution [161-168].  

 Let us describe the interaction “atom-laser field” by the Ivanov potential: 

                                               ( ) ( ) 0 0 0( ) cos( ),  
n

V r t V r fd t n     


=−

= − +                (2) 

Here 0 is the central laser radiation frequency, n is the whole number. The 

potential V represents the infinite duration of laser pulses with known frequency 

. Next we will consider the interaction of an atom with a single pulse. The 

function f() is a Fourier component of the laser pulse. The condition:  

 

                                                         2 1( )fd  =                                                (3) 

normalizes potential ( ),V r t  on the definite energy in the pulse.  

 Let us consider the pulses with Lorentzian shape (the coherent 1-mode 

pulse):  

                                                                2 2 ,( ) (/ )f   = +                                 (4a) 

 

the Gaussian one (the multi-mode chaotic pulse):  

 

                                                                 2 2)exp /( ) (f   =  ,                             (4b) 

 

where  -normalizing multiplier, and the soliton-like pulse [174]. A case of the 

Lorentzian shape laser pulse has been earlier studied [161-164].  

Here we will focus on the case of the Gaussian shape laser pulse [173-175]. The 

main program results in the calculating an imaginary part of energy shift ImE 

(0) for any atomic level as the function of the central laser frequency 0. An 

according function has the shape of the resonance, which is connected with the 

transition -s (, s-discrete levels) with absorption (or emission) of the “k” 

number of photons. We will calculate the following quantities for the 

multiphoton resonance:   

 

                                              ( | ) ( ,) ( ) / /ss k Im Ed k N       − = −            (5a) 

                                                    / / ,( ) ( )n

n sM E kd Im N    = −                     (5b) 

                                                           ,( )N Imd E  =                                   (6) 

                                                         ( )|s s kk s   += −                            (7) 

 



 

where N  is the normalizing multiplier; s is position of the non-shifted line for  

transition s-, (s-|k)  is the line shift under k-photon absorption. As usually, 

the quantities M are the moments of radiation absorption or emission lines for 

atomic system in a laser field.  

 In principle, an  infinitive series of Mn  determine a curve of emission and 

absorption. Let us remember that the zeroth (a square of the absorption curve) is 

usually used for measurement of an oscillator strength.  The first moments M1, 

M2 and M3 determine the atomic line centre shift, its dispersion and the 

asymmetry etc. The asymmetry coefficient of resonance line is defined as 

follows:  

 

                                                                     2

1

3/

3 2/ MM = .                                     (8) 

 

Here, for the time being, we assume that the contribution of only one resonance 

is taken into consideration. It should be borne in mind that in the case of random 

imposition of resonances, possibly of different quantumness, the shape of the 

line can become substantially more complex and, in order to describe it, a 

definition of the higher moments is required. It is worth recalling that the 

method of moments was used with great success in the theory of light 

absorption, for example, by excitons in a solid. 

 To determine the quantities Mn , one should need to obtain an expansion of 

E to the following PT series:  

                                                       ( )2

0( ).
k

E E   =                                       (9) 

 

 According to Refs.[1-6], contributions of k-photon processes first appear 

only in the terms E (2k). The term E (2k+2) contains the correction of the 

following approximation. Let us note that the values of the moments are 

calculated in the lowest second order of the PT, whose smallness parameter is 

proportional to V/ E (where V is the amplitude of the field oscillations, and E is 

the characteristic energy of the electronic transitions). The non-adiabaticity 

parameter is proportional to V/ kE (k is a quantumness of a process).  Obviously, 

the adiabatic approach turns out to be valid at least with the same accuracy as 

the PT.  

 An external electromagnetic field shifts and broadens the atomic levels.  

The   standard quantum approach relates complex eigenenergies / 2rE E i = +   

and complex eigenfunctions to the corresponding resonances.  The field effects 

drastically increase upon going from one excited level to another. The highest 

levels could overlap forming a “new continuum” with lowered boundary. In the 

case of a strong field, its potential should appear in the Dirac equations already 

in the zeroth-order approximation (the solution is Dirac-Volkov type function). 

On the other hand, it is convenient to use methods such as operator PT with 

included  well known “distorted-waves” zeroth  approximation” in the frame of 



 

the formally exact PT. In fact a physically reasonable spectrum (eigenenergies 

and eigenfunctions)  must be chosen as the zero order, similar to the “distorted 

waves” method [3]. In a case of the optimal zeroth-order spectrum, the PT 

smallness parameter is of the order of Е , where   and E are the field width 

and bound energy of the state level examined. 

 Next one should use the known Gell-Mann and Low adiabatic formula for 

E with QED scattering matrix. Thee representation of the S- matrix in the 

form of PT series induces the expansion for E: 

 

                                           ( )
1 2

0 1 2

...

1 2
0

  , ,..., , ,..., , ( ) lim ( )
lk k k

l lE c Jk k k k k k 


  
→

=          (10) 

                                                           ( )

1
1 2, ,..  ( )., ,j

j

k

lk k kJ S 
=

=                                 (11)  

                                                   ( ) ( ) 1 1 2

10

1 ... ... ,          
n

nn

n n

t

dS t t VV Vd  

−

− −

= −              (12) 

                                                     ( ) ( ) ( )0 0exp exp exp  = ( )i i i i iiH t V rV t iH t t− .                 (13) 

 

where S is QED scattering matrix,  is an adiabatic parameter, H0 is the 

unperturbed atomic hamiltonian, c (k1, k2,...,kn) are the numerical coefficients. 

The details of rather cumbersome transformations are presented in Refs. [1-3], 

where the structure of matrix elements S
(n)  is also described. Here we only note 

that one may to simplify a consideration by account of the k-photon absorption 

contribution in the first two PT orders. In this approximation one can write [2-

4]: 

                                               

( ) ( ) ( ) ( )

( ) ( ) ( )

2 4 2 2

0

2

0

2  2 2 2

2 4( ) lim { }

2( ) [

2

]1  
k

k

k k

S S S S

k S S

i

S

E    

 





 
→



=

+

+ − +

+ −

=

+

            (14) 

 

where, for example, ( )2
S is determined as follows [163]: 

 

                                           

( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 2 1 2 0 1 1

0 1 2

0

0 2 0 2

0

~ exp  

exp exp exp .

exp[ ( )] |

|

S t t t t iH t V rt

iH t iH i

d d

t V rt H t

 




− −

+ 

 − −  

 

        (15) 

 

 If we ignore the effects of interference, the multiple summation over the 

pulses in the matrix element J
can be replaced by a single one and J

will 

contain only finite and divergent terms as 1/ (see details in Refs. [164,165]). 

The latter give a finite contribution to E  for  tending to zero. The integrals on 

a laser frequency are as follows:  

 



 

                                    

1

0 0 0

1

0 0 0

( ) { ( )}

{ ( )} ( / )

i

j

i s i

n

j s j

i

s

j

d F n ir

n ir k d



 

   

    

−

−

  =  − − 

− − − −





                (16) 

where  n,r 0 are the whole numbers; si, sj – indexes of the virtual atomic states, 

on which summation is fulfilled. Using the standard technique of theory of 

functions of a complex variable the above written integrals in Eqs. (5) can be 

represented as a sum of contributions of the separated poles from the upper (k-

photon absorption) and the lower (k-photon emission) semiplanes. After some 

transformations one can get the expressions for line moments. The final results 

for quantities (5) for the Gaussian shape laser pulse are as follows:   

 

                                        ( ) ,( | ) [ ( , )[π / 1 ] / , /( )]s ss a k k k E s k E k    − =  + −         (17) 

 

                                                               M2 = 2/k ,                                      (18) 

 

                                            ( )3

3 4π / 1 , / , / ,({ }[ ) ( )]s sM k k E s k E k   +  −=            (19) 

                                                                                                                                                      

where                  

                                        1 1 1
( / ) [ ]

2 /
,

/i i

i i i

s s

s js

s j j

s js s

E k
k

j V V
k 





  

+
+

=
+

          (20) 

The summation in (20) is over all atomic states. The equations (17)-(20) 

describe the main characteristics of the radiative emission and absorption line 

near the resonant frequency s/k. The corresponding expressions for the 

Lorentzian shape laser pulse are given in Refs. [3]. For the soliton-like pulse it is 

necessary to use some approximations to simplify the expressions and perform 

the numerical calculation [4]. The next serious problem is calculation of the sum 

(20), which includes infinite summations over the complete set of unperturbed 

(or distorted in the zeroth approximation in a case of a strong field) atomic 

states. One of the most widespread methods for calculating the sums (20) is the 

Green function method (look below). However, as it was indicated in Refs. [1-

8], the more preferable and effective method is based on the advanced algorithm 

of differential equations. It is worth to note that this method has been frequently 

used earlier in calculations of different atomic system energy and spectroscopic 

characteristics.  

3. The modified Ivanova-Ivanov method of calculation of the perturbation 

theory second order sum  

 Below we present an effective approach to calculating the PT second order 

sums of the form (20). Its original version was proposed by Ivanova-Ivanov [1] 



 

to calculate sum of products of the interelectron interaction operator matrix 

elements over  infinite set of virtual states, including the states of the negative 

continuum. An advanced version was elaborated in Ref [163-165,168,173].  The 

method leads the problem of calculating infinite sums to the solution of a system 

of the ordinary differential equations with the known boundary conditions under 

r=0. In theory of relativistic atom the solution is found in quadratures of the 

Dirac functions and some auxiliary functions (look below).  

 The necessary sums can be expressed through sums of the following one-

electron matrix elements: 

 

                                     ( )
1 1 1

1

1 1 1 1 1 1 / n m

n

S n m V n m n m V n m      = − ,           (21) 

 

where  (nm) – quantum numbers of one-electron states,   =nm+s/k is the 

energy parameter. One-electron energies εnχm include the rest energy (αZ)-2, 

where  is the fine structure constant and Z is charge of a nucleus. Here and 

below we use the Coulomb units (1 C.u.=Z2 a.u.e.; a.u.e.= 1 atomic unit of 

energy).   

Let us consider schematically a procedure of calculating the sum (21). When 

calculating the resonances shifts it is necessary to determine (21) in the case of 

running an index n1 over the whole spectrum of states. 

For definiteness, let us concretize an interaction of atom with a laser filed. In 

particular, for the typical dipole interaction the corresponding potential is as 

follows: 

 

   V(r)=(a,α),                                                 (22) 

 

where a is a vector of polarization of radiation;  α is a vector of the Dirac 

matrices. One should introduce a bi-spinor of the following form [36,161-

163,182]:  

    

                                       ( )
1 1 1 1 1 11 1

1

1 1 1 /n m n mm
n

n m V n m 
     = −                (23)  

 

The radial parts F, G of a bi-spinor  satisfy the system of differential 

equations:  

 

                             ( ) ( )1 1 1 1/ 1 , nF Z F Zr A G C j l m jlm f Z   −
− + + + = a ,           (24a) 

                        

                                 ( ) ( )1 1 1 11 , nG Z G Zr A F C j l m jlm g Z   +
 + − + = a ,             (24b) 

 

                                                        2( ) 1/ ( )MFA U r Z  =  −                             (25) 



 

 

The corresponding functions in Eqs. (24) are dependent upon polarization 

vector a and defined in the Refs [1-5].  As usually, in the Cartesian coordinates 

the vector a3=(1,0,0) corresponds to linear polarization, and the vectors 

a1=(1,i,0) and a2=(1,-i,0) correspond to circular polarization.  

The solution of the system (24) can be represented as follows:  

 

                         F ( ) ( ) ( ) ( ) ( ) 2 2 2 1/2

1 2( / 2) ( )r Z h r f r h r f r Z   = − − 
,               (26a)     

                                               

( ) ( ) ( ) ( ) 2 2 2 1/2

1 2( / 2) ( ) ( ) .G r Z h r g r h r g r Z  = − −               (26b) 

                                                                                                       

A pair of functions ( f, g) and ( gf ~,
~ ) are two fundamental solutions of equations  

(23) without the right parts. The functions ( ) ( )1 2,h r h r  are determined as follows: 

 

                              ( ) ( ) ( ) ( )2

1 1 1 1

0

, ( ) ( )

r

n nh r C j l m jlm dr r g r f r f r g r 
      = + a ,             (27a) 

                                ( ) ( ) ( ) ( )2

2 1 1 1 1

0

, ( ) ( )

r

n nh r C j l m jlm dr r g r f r f r g r C 
      = + + a .      (27b)                            

 

The constant C1 in Egs. (27) is determined as follows:  

 

2

1

0

~ [ ( ) ( ) ( ) ( )].n nC dr r g r f r f r g r 



+
                              (28) 

in the case  ( ) 2− Z , i.e. an energy lies below the boundary of ionization and 

and does not coincide with any of the discrete eigenvalues of the Dirac 

equations.  In the case  ( ) 2− Z  (i.e. an energy lies above the boundary of 

ionization) the value C1 is determined from the following condition:  

 

                                                 ( )
+

→
=+

rT

r
mm

r
GgFfrrdr ,0lim

1111

22


                       (29) 

Here 
11m  is one-electron state of scattering with energy ε; Т is a period of 

asymptotic oscillations of the functions f, g (see details in Refs. [161-164]):   

 

                                                            ( )  2
1

222 −−= ZT  .                                     (30) 

 

Other  possible situations to determine C1, in particular, the case of coincidence 

of  energy ε  with energy of some discrete level n0χ1m1  , are considered in refs. 

[3].  The final expression for the sum  (21) can be written as follows:  

 

 ( ) ( )
1

2

1 1 1 1 1 1 1( ) , ( ) ,n nS dr r f G r C a jlm j l m g F r C a jlm j l m 
 =   +  
  .            (31) 

 



 

Above we presented a procedure to calculate the quantity (21) in the case 

of running an index n1 over the whole spectrum of states. In the case, if  some 

state n0 is excluded from the sum (21), one should use another system of 

equations  (24):  

                             ( ) ( )
0 1 11 1 1 1 2/ 1 [ , ]n n mF Z F Zr A G C j l m jlm f g ZC    −

− + + + = −a ,            (32a) 

                        

( ) ( )
0 1 11 1 1 211 [ , ]n n mG Z G Zr A F C j l m jlm g f ZC    +

 + − + = −a ,              (32b) 

 

( ) ( )
0 1 1 0 1 1

2

1 1 11 1 1 1, ,n m n m n m n mC mdr r f g C a j l m jl g f C a j l m jlm   
 = −
                  (33) 

 

Then the transformations are fulfilled in the same way as described above. 

Finally the computational procedure results in a solution of sufficiently simple 

system of the ordinary differential equations for above described functions and 

integral (24).  

  The alternative approach to calculating (21) is based on the using method 

of the Green’s function of Dirac equation and presented, for example, in Refs. 

[3-6] in the Dirac-Kohn-Sham model of multielectron atom. The Green’s 

function is defined as the solution of the inhomogeneous Dirac equation: 

 

                       ( ) ( ) ( )2121
ˆ rrrrGH E −=−  ,                                   (34)  

 

where Ĥ  is the Dirac Hamiltonian,   is an energy parameter. The known   

spectral decomposition of the Green’s function is as follows:  

 

                                                    ( ) ( ) ( ) ( ) −=
mn

nmnmn EErrErrG


 /| 1221
.                     (35) 

 

where one can usually allocate partial contributions with a fixed χ (Dirac's 

angular quantum number), each of which is a product of the radial ( ),|21 ErrG  and 

angular parts. In the relativistic theory, the Green's function is a 4-component 

matrix: 

 

                ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
,,|21 












=





rGrGrFrG

rGrFrFrF
ErrG 



                            (36) 

  

where ( ) rr  is more (less) of 21 , rr  . According to Ref. [3], the system of the 

corresponding Dirac equations for F and G component in the Dirac-Kohn-Sham 

approximation is as follows [3]:  

 

( ) ( ) ,]~)([~/ 2 GirVrVrFF DKS

N

−−−+++−=                    (37a) 

 



 

( ) ( ) ,]~)([~/ 2 FirVrVrGG DKS

N

−+−+−−=                   (37b) 

 

( ) ( ) 2' / [ ( ) ] ,DKS

NF F r V r V r i G     −=− + +  + − −             (38a) 

 

( ) ( ) 2' / [ ( ) ] ,DKS

NG G r V r V r i F     −= + −  + − +                 (38b) 

 

де =~ , ( )rVN
 is the potential of a nucleus. The functions (F, G) represent the 

first fundamental solution, which is regular for 0→r  and singular for →r . Any 

combination ( ) ( )2
, ,F G Xr F G


+  satisfies the above written equations for ( )GF

~
,

~  and 

represents singular solution at zero [4-6]. The right chosen combination ( )GF


,  for 

the single value of the mixing coefficient X (regular for →r ) is second 

fundamental solution ( )gf


, . The corresponding condition is as follows:  ( )GF


, ~ 

( );exp Ar− , ( ) .~~ 2
1

222  += −A  The corresponding computational procedure again 

includes solving an ordinary differential equations system for relativistic wave 

functions, computing all matrix elements and so on. In concrete numerical 

calculations the PC “Superatom-ISAN” package (version 93) is used. 

4 Some illustrative computational results 

 Below, as illustration, we list the results of calculation of the multi-photon 

resonance shifts and widths in the caesium (transition 6S-6F in the atom of Cs; 

wavelength 1059 nm) atom and compare our results with other available 

theoretical and experimental data by Zoller and Lompre et al [86,87]. The 

experimental studying the multi-photon ionization in Cs was carried out in Ref. 

[15].  Lompre et al investigated the laser temporal-coherence effects in four-

photon ionization of caesium atom using a tunable wavelength Nd-glass laser 

pulse (the laser operated in either single or multimode; in the latter case, the 

laser bandwidth can be varied between 310-2  and 1.5 cm-l) and tuning the 

frequency onto the resonant three-photon transition 6S-6F. These authors 

showed that the resonance shift induced with incoherent laser pulses (Gaussian 

pulse) is statistically enhanced by a factor of 2.8±0.2 compared with the shift 

induced by coherent pulses (Lorenz pulse), in a physically reasonable agreement 

with model calculations. At the intensity ~ 108 W/cm2 the resonance width 

varied linearly with the intensity and is statistically enhanced. According to [87], 

a line shift is linear with respect to laser intensity I (I is increased from 1,4 to 

5,7107 W/cm2) and is equal (for Gaussian multi-mode pulse): (s|k)=bI with 

b=(5,6±0,3) cm-1/GWcm-2  (b is expressed in terms of energy of the three-

photon transition 6S-6F).  The corresponding shift obtained with coherent (1-

mode) pulse is as follows:  0(s|k)=aI, a=2 cm-1/GWcm-2.  



 

 Theoretical values, obtained with using no-optimized atomic basis set (see, 

e.g., [167,175]), are as follows: i). for soliton-like laser pulse: (s |k) =bI 

with b=6,7 cm-1/GWcm-2; ii). for the Gaussian multi-mode pulse (chaotic light): 

(s|k)=bI with b=5.8 cm-1/GWcm-2 ; iii). for the coherent one-mode pulse: 

(s|k)=aI, a=2,1 cm-1/GWcm-2 . The analogous theoretical values, obtained 

in our calculation, are as follows:  a). the Gaussian pulse (chaotic light)  

(s|k)=bI, b=5.63 cm-1/GWcm-2; b). the coherent one-mode pulse: 

(s|k)=aI, a=2.02 cm-1/GWcm-2. One can see that for the multi-mode pulse, 

the radiation line shift is significantly larger (in ~ 3 times) than the 

corresponding shift, which is obtained for single-mode pulse.  

 In figure 1 we present the results of calculation for the multi-photon 

resonance width for transition 6S-6F in Cs in dependence on I.  
 

 

 
 

Figure 1. The multi-photon 6S-6F resonance width for Cs  in dependence on the 

laser intensity I: S- for the single-mode Lorentzian  pulse;  М1, М3, М4,M5  for 

the  multi-mode Gaussian pulse respectively with the line band 0.03, 0.055, 

0.08,  0.15cm-1;  М2, М6- for the  multi-mode Gaussian pulse respectively with 

the line band 0.03,  0.15cm-1 (no-optimized atomic basis set); dots-experiment  

(see text). 

 

 In Ref. [1] there are presented experimental data for laser pulse of the 

Gaussian shape with line band respectively 0.03cm-1, 0.08cm-1, 0.15cm-1. In 

general there is a physically reasonable agreement between the theoretical 

results and experimental data. Analysis shows that the shift and width of the 

multi-photon resonance line for the interaction “atom- a multimode laser pulse 



 

(chaotic light)” is greater than the corresponding shift and width for a case of the 

“atom- single-mode pulse  (coherent light) interaction” (the Lorentzian pulse 

model).  From the physical point of view it is provided by action of the photon-

correlation effects and influence of the laser pulse multi-modity. The 

corresponding asymmetric nature of the multiphoton resonance line in the 133Cs 

atom is naturally explained within the presented theoretical approach. 

 

 

II. Task options for self-sufficient work 

 

Task Option 1. 

 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the multiphoton  resonances using the standard  

quantum-mechanical amplitude approach  and new S-matrix formalism by  

Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical 

amplitude approach , ii) mathematical and physical essense of S-matrix 

formalism by  Glushkov-Ivanov: iii) calculation of the AC Stark effect 

multiphoton Stark resonances energies and widths s, iv) calculation of the 

ionization cross section in a presence of AC electric field,  v) analysis of the role 

of correlation effects and value of the field strength,   

 Explain all definitions in theory of multiphoton resonances for atomic 

systems in AC electromagnetic field on the example of the hydrogen, helium 

and any alkali atom  , preliminarily describing the corresponding spectrum of a 

free system , i.e. without an external electric field. 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

theAC multiphoto n resonances energies and widths of any alkali atom, say 

lithium Li.  To perform its pracrical realization (using Fortran Power Station , 

Version 4.0; PC Code: “Superatom-Stark” for quantum system from the first 

task of the option (all necessary numerical parameters should be self-taken).   

 

Task Option 2. 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the multiphoton  resonances using the standard  

quantum-mechanical amplitude approach  and new S-matrix formalism by  

Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical 

amplitude approach , ii) mathematical and physical essense of S-matrix 



 

formalism by  Glushkov-Ivanov: iii) calculation of the AC Stark effect 

multiphoton Stark resonances energies and widths s, iv) calculation of the 

ionization cross section in a presence of AC electric field,  v) analysis of the role 

of correlation effects and value of the field strength,   

 Explain all definitions in theory of multiphoton resonances for atomic 

systems in AC electromagnetic field on the example of the hydrogen, helium 

and any alkali atom  , preliminarily describing the corresponding spectrum of a 

free system , i.e. without an external electric field. 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

theAC multiphoto n resonances energies and widths of any alkali atom, say 

sodium Na.  To perform its pracrical realization (using Fortran Power Station , 

Version 4.0; PC Code: “Superatom-Stark” for quantum system from the first 

task of the option (all necessary numerical parameters should be self-taken).   

 

Task Option 3. 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the multiphoton  resonances using the standard  

quantum-mechanical amplitude approach  and new S-matrix formalism by  

Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical 

amplitude approach , ii) mathematical and physical essense of S-matrix 

formalism by  Glushkov-Ivanov: iii) calculation of the AC Stark effect 

multiphoton Stark resonances energies and widths s, iv) calculation of the 

ionization cross section in a presence of AC electric field,  v) analysis of the role 

of correlation effects and value of the field strength,   

 Explain all definitions in theory of multiphoton resonances for atomic 

systems in AC electromagnetic field on the example of the hydrogen, helium 

and any alkali atom  , preliminarily describing the corresponding spectrum of a 

free system , i.e. without an external electric field. 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

theAC multiphoto n resonances energies and widths of any alkali atom, say 

rubidium Rb .  To perform its pracrical realization (using Fortran Power 

Station , Version 4.0; PC Code: “Superatom-Stark” for quantum system from 

the first task of the option (all necessary numerical parameters should be self-

taken).   

 

 



 

 

Task Option 4. 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the multiphoton  resonances using the standard  

quantum-mechanical amplitude approach  and new S-matrix formalism by  

Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical 

amplitude approach , ii) mathematical and physical essense of S-matrix 

formalism by  Glushkov-Ivanov: iii) calculation of the AC Stark effect 

multiphoton Stark resonances energies and widths s, iv) calculation of the 

ionization cross section in a presence of AC electric field,  v) analysis of the role 

of correlation effects and value of the field strength,   

 Explain all definitions in theory of multiphoton resonances for atomic 

systems in AC electromagnetic field on the example of the hydrogen, helium 

and any alkali atom  , preliminarily describing the corresponding spectrum of a 

free system , i.e. without an external electric field. 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

theAC multiphoto n resonances energies and widths of any alkali atom, say 

caesium Cs.  To perform its pracrical realization (using Fortran Power Station , 

Version 4.0; PC Code: “Superatom-Stark” for quantum system from the first 

task of the option (all necessary numerical parameters should be self-taken).   

 

Task Option 5. 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the multiphoton  resonances using the standard  

quantum-mechanical amplitude approach  and new S-matrix formalism by  

Glushkov-Ivanov: i) mathematical and physical essense of quantum-mechanical 

amplitude approach , ii) mathematical and physical essense of S-matrix 

formalism by  Glushkov-Ivanov: iii) calculation of the AC Stark effect 

multiphoton Stark resonances energies and widths s, iv) calculation of the 

ionization cross section in a presence of AC electric field,  v) analysis of the role 

of correlation effects and value of the field strength,   

 Explain all definitions in theory of multiphoton resonances for atomic 

systems in AC electromagnetic field on the example of the hydrogen, helium 

and any alkali atom  , preliminarily describing the corresponding spectrum of a 

free system , i.e. without an external electric field. 



 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

theAC multiphoto n resonances energies and widths of any alkali atom, say 

francium Fr.  To perform its pracrical realization (using Fortran Power Station , 

Version 4.0; PC Code: “Superatom-Stark” for quantum system from the first 

task of the option (all necessary numerical parameters should be self-taken).   

 

 

Task Option 6. 

1). Give the key definitions of a theoretical approach to definition of the   energy 

and spectral characteristics of the Stark resonances using the standard  quantum-

mechanical amplitude approach  and new formalism of operator perturbation 

theory by Glushkov-Ivanov: i) mathematical and physical essense of quantum-

mechanical amplitude approach  , ii) mathematical and physical essense of 

operator perturbation theory by Glushkov-Ivanov: iii) calculation of the Stark 

resonances energies and widths s, iv) calculation of the ionization cross section 

in a presence of DC electric field,  v) analysis of the role of correlation effects 

and value of the field strength;   Explain all definitions in theory of Stark 

resonances for atomic systems in DC electric field on the example of the 

hydrogen, helium and any alkali atom, preliminarily describing the 

corresponding spectrum of a free system , i.e. without an external electric field. 

2).To apply the operator perturbation theory by Glushkov-Ivanov for computing 

the Stark resonances energies and widths of any alkali atom, say Fr.  To perform 

its pracrical realization (using Fortran Power Station , Version 4.0; PC Code: 

“Superatom-Stark” for quantum system from the first task of the option (all 

necessary numerical parameters should be self-taken).   
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