
 

1 
 

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 

ODESSA STATE ENVIRONMENTAL UNIVERSITY 

 

 

 

 

 

 

 

 

 

 

 

 

A.V. Glushkov, O.Y. Khetselius  
  

 

 

MATHEMATICAL PHYSICS OF CLASSICAL AND QUANTUM 

SYSTEMS. P.7 
 

 

Lectures Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

    

   

Odesa

Odessa  State  Environmental  University

2023



 

2 
 

 
  

 
 

 

   

      

     

  

 
 

 

  

    
 

UDK 539.184:539.27 

 

 

 

 

 

Recommended by the Methodical Council of the Odessa State Environmental University of the 

Ministry of Education and Science of Ukraine as lectures notes  

(protocol No.2 оf 26.10.2022) 
 

 

 

 

 

 

 

 

 

                 
 

                                                             

                            

 

UDK  539.184:539.27

G41

Glushkov  A.V.,  Khetselius  O.Y.

G41  Mathematical Physics of Classical and Quantum Systems.P.7:  Lecture’s Notes.  
Odesa:

Odessa  State  Environmental  University, 2023.  90p.

  ISBN  978-966-186-229-5

  The  book  presents  the detailed explanation of  such  topics as  as electron-beta-
nuclear spectroscopy of atoms and molecules, the effect of the chemical environment 
on the parameters of beta decay, basic methods in the theory of beta decay and co-
operative electron-beta-kaon-nuclear  processes,  theoretical models  of  electron  rear-
rangement,  induced  by  nuclear  transmutation,  the  theory  of  the  influence  of  the 
chemical environment on the parameters of beta decay, etc.
  It can be used by  PhD students (postgraduates  and scientific workers) of the 
speciality  113-"Applied  Mathematics",  as well as  111-"Mathematics” and  so on.

ISBN  978-966-186-229-5

  ©  Glushkov  A.V.,  Khetselius  O.Y., 2023,

©  Odessa  State  Environmental  University,  2023



 

3 
 

СONTENTS 

 

List of abbreviations, constants, units used ………………………...…………..4 

Constants, units used ………………………...…………………………………5 

INTRODUCTION ……….……………………………………………………..6 

PART 1 ELECTRON-Β-NUCLEAR SPECTROSCOPY OF ATOMIC 

SYSTEMS AND MANY-BODY PERTURBATION THEORY APPROACH 

TO COMPUTING Β-DECAY PARAMETERS………………………………..7 

1.1 Modern concepts of the physical nature of nuclear beta decay……………..8 

1.2  Main characteristics of β-decay. Classification of β-transitions. Selection 

rules…………………………………………………………………………….15 

1.3 Theoretical method. Relativistic Many-body Perturbation Theory ……..…27 

1.3.1 Determination of the probability of beta decay. Allowed and over- 

allowed transtions…….………………………………………………………..27 

1.3.2 Combined Nuclear and Relativistic Many-body Perturbation Theory…..30 

1.4   Results …….……………………………………………………………..32 

1.5 Conclusions………………………………………………………………...43 

PART II RELATIVISTIC QUANTUM CHEMISTRY AND SPECTROSCOPY 

OF SOME KAONIC ATOMS:  HYPERFINE AND STRONG 

INTERACTION EFFECTS ……………………………………………………44 

2.1  Introduction……………………………………………………………..…45 

2.2 Relativistic theory of kaonic atoms with accounting for the nuclear, 

hyperfine and strong interaction effects……………………………………......47 

2.2.1 The Klein-Gordon-Fock equation and electromagnetic interactions in 

kaonic system……………………………………………………………… ….47    

2.2.2 Model approach to study of the strong and hyperfine interactions in kaonic 

atoms……………………………………………………………….…………...50 

2.3 Quantum electrodynamics effects in kaonic  atomic systems….…………..53 

2.4 Elements of Relativistic energy approach……..…………………………...55 

2.5 Some Results and Conclusions …………………………………………….61  

CONCLUSIONS…………………………………………………………..…...70 

REFERENCES……………………………………………………………..…..71 

 

 

 

 



 

4 
 

LIST OF ABBREVIATIONS, CONSTANTS, UNITS USED 

 

MPR –   multiphoton resonance (1.resonances) 

DE – differential equation (1.method) 

QED – quantum electrodynamic 

LR – laser radiation  

REF  –  relativistic energy formalism  

RHF – relativistic approximation Hartree-Fok 

PT  –  perturbation theory 

PTDF – many-particle PT with DF zero approximation; 

GF – Green’s function (1.method) 

АC – alternating current 

DF –   Dirac-Fock (1.method) 

DKS –  Dirac-Kohn-Sham (1.method) 

DC – direct current 

LE  –  Lyapunov's exponents 

QP – quasi-particle 

ХС (1.effects) – exchange-correlation (1.effects) 

WKB  – WKB approximation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

 

CONSTANTS, UNITS USED 

 

Fundamental constants:  

Speed of light c=2,997925108 м/c;  Elementary charge  e=1,6021910-19 Кл;  

Electron mass m=9,109510-31 кг;   Planck constant ħ=1,0545910-34Джс;  

Rydberg constant R=1,0973732107м-1 Bore radius ħ2/me2=0,5291773 Å;   

Fine-structure constant =e2/ħc,1/=137,03597;  

 

Units.  Everywhere where otherwise indicated, atomic units are used: e=1, ħ=1, 

m=1 (1.c=137,03597). Atomic units of length, time and velocity: 

ħ2/me2=5,29177310-11 m, ħ3/me4=2,418910-17 s, e2/ħ=2,1877106 m/s. Atomic 

unit of energy (1.a.u.e.) me4/ħ2=2Ry=27,2116eV=4,359810-18J=2,19475105сm-1 

(1.me4/2ħ2= Ry – Rydberg). Energy in Coulomb unts (1.c.u.): 1 c.u.e.=Z2 a.u.e. 

(1.Z – charge of atomic nucleus). Relativistic units: ħ=1, c=1, m=1, 

e2=1/137,03597. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 
 

Introduction  

 

The discipline "Mathematical Physics of Classical and Quantum Systems" 

is an important, mandatory discipline in the cycle of professional training of 

graduate students (1.third level of education) in the specialty 113- Applied 

Mathematics. 

The purpose of studying the discipline is to master (1.provide) a number of 

competencies, in particular, including the study of modern mathematical physics 

of classical and quantum systems, to develop and use new mathematical ap-

proaches, to build fundamentally new methods and algorithms for systems anal-

ysis, mathematical modeling, programming and forecasting in solving current 

problems of theory and practice of complex classical and quantum systems, in 

general complex systems, use modern scientific methods and achieve scientific 

results that create new knowledge. 

The place of the discipline in the structural and logical scheme of its teach-

ing: the knowledge gained in the study of this discipline is used in writing dis-

sertations, the subject of which is related to the study of fundamental energy 

(1.radiation) characteristics of complex classical and quantum systems with pos-

sible generalization to various classes of mathematical chemical, cybernetic and 

other systems. 

The basic concepts of the discipline are the desired tools of an experienced 

specialist in the field of applied mathematics. 

After mastering this discipline, the graduate student must be able to use 

modern or develop new approaches, in particular, based on the apparatus of 

mathematical physics of classical and quantum systems to analyse, model, pre-

dict, program the characteristics of complex classical and quantum systems with 

computer experiments. 

In the lecture’s notes I present a consistent relativistic approach to calcula-

tion of energy and spectral parameters of the kaonic exotic atomic systems with 

accounting for the nuclear radiative (1.quantum electrodynamics), hyperfine and 

strong interactions. The approach is naturally based on using the relativistic 

Klein-Gordon-Fock equation with introduction of electromagnetic and strong 

interactions potentials 
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PART 1  ELECTRON-Β-NUCLEAR SPECTROSCOPY OF ATOMIC 

SYSTEMS AND MANY-BODY PERTURBATION THEORY 

APPROACH TO COMPUTING Β-DECAY PARAMETERS 

Abstract. The modern concepts of physical nature of a beta-decay are 

briefly presented as well as the main characteristics of a beta-decay, 

classification of the beta-transitions, selection rules etc.  It is presented a new 

relativistic approach to calculating the characteristics of the β-decay of atomic 

systems (nuclei), based on the combined relativistic nuclear model and 

relativistic many-body perturbation theory formalism with correct accounting 

for exchange-correlation, nuclear, radiation corrections. A relativeistic many-

body perturbation theory is applied to electron subsystem, and a nuclear 

relativistic middle-field model is used for nuclear subsystem. All correlation 

corrections of the second order and dominated classes of the higher orders 

diagrams are taken into account. Within the framework of the presented theory, 

the characteristics of a whole series of allowed (super-allowed) β-decays are 

calculated, namely, for 33P→33S, 35S→35Cl, 45Ca→45Sc, 63Ni→63Cu, 
106Ru→106Rh, 155Eu→155Gd, 241Pu→241Am decays. The effect of the chemical 

environment of an atom on the characteristics (integral Fermi function, half-life) 

of the beta-transitions is studied. The results of accurate calculation of the beta-

decay parameters are presented and compared with alternative theoretical data. 

Results of computing the Fermi function of a −-decay with different definitions 

of this function are presented. The effect of an atomic field type choice on the 

beta decay characteristics as well as the influence of accounting for the 

exchange-correlation effects in the wave functions of the discrete and 

continuous spectrum on the values of the Fermi and integral Fermi functions are 

calculated. The obtained data are analyzed and compared with available in 

literature.  

Keywords: Beta-decay – Electron-beta-Nuclear Spectroscopy - Relativistic per-

turbation theory – Correlation, nuclear, radiative corrections - integral Fermi 

function 
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 1.1 Modern concepts of the physical nature of nuclear beta decay 

Nuclear −decay is a manifestation of the fundamental weak interaction 

of elementary particles (see, for example, [1-22]). Nuclear β-decay is a manifes-

tation of the fundamental weak interaction of elementary particles (see, for ex-

ample, [1-6]).  

According to modern concepts, beta decay is due to the transformations of 

quarks: in −-decay, one d-quark of a nucleon turns into a u-quark, in β+-decay 

reverse transformation occurs. The main quanta of the weak interaction are the 

so-called intermediate bosons – particles of large mass: 81,8 (W) 91,2 (Z0) 

GeV/s2. They were opened in 1983 in CERN (European Center for Nuclear Re-

search, Switzerland). The weak interaction due to the large values of the masses 

of the virtual intermediate bosons W and Z0 is essentially short-range. It is easy 

to estimate the radius R of the action of exchange forces, which is characterized 

by the time (unobservability) t of violation of the energy conservation law by 

the amount of energy Е = mc2 carrier of all types of interactions between parti-

cles – virtual boson: 

  

                                
mcE

ctcR


=


 ,   (1) 

 

where the conjugate parameters t and Е are related and determined by the 

Heisenberg uncertainty relation and c is the velocity of light. Hence, the radius 

of action of weak forces is 

 

                       Fm
MeV

FmMeV

cM

c
R

ZW

ZW

3

32

,

, 102
10100

200 −






=


, (2) 

 

 

where Е  MW c2  MZ c2 100 GeV. 

     Weak interaction is the only interaction in which both the electrical charge of 

fermions and their aroma can change. The change in the charge of fermions is 

due to the presence of an electric charge in the quanta of the W± field. The clas-

sical theory of weak interaction considered only processes with a change in 

charge, such as β- and -decays (Figure 1). 
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     As mentioned above, in the modern Weinberg-Glashow-Salam theory of 

weak interaction, which combines weak and electromagnetic interactions, in 

addition to charged W-bosons, there is also a neutral Z0-boson. This corresponds 

to the course of processes in which the electric charge of fermions does not 

change. Naturally, here we are talking about neutral currents, which make a con-

tribution, for example, to ее-scattering (Figure 2). 

 

 

 

 

 

 

 

 

 

Figure 1 − Feynman diagrams for β- and -decays 

 

 

 

 

  

 

 

 

 

Figure 2 − Contribution of neutral currents to ее-scattering 

 

β-decay of nuclei is one of the three main types of radioactivity. With electronic 

(−)-decay, one of the neutrons of the nucleus turns into a proton with the emis-

sion of an electron and an electron antineutrino 
~

e : 

 

.     (3) 

 

Here А – the mass number, Z – the charge of a nucleus, N – the number of neu-

trons. In positron (β+) decay, one of the protons of the nucleus turns into a neu-

tron with the emission of a positron and an electron neutrino νе. 
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                       .                    (4) 

 

     Beta decay is closely related to the so-called reverse β-processes: capture of 

an electron from the K-shell of an atom (К-capture) or less likely to be captured 

from L- and other shells (electronic capture): 

 

                                           е- + N

A

Z X → 11 +− N

A

Z X + νe ,    (5) 

 

and also reverse β-decay: 

 

                                         νе (
~

e ) + N

A

Z X → 11 N

A

Z X +e- (e+).          (6) 

 

These processes are associated with neutrino processes: 

 

                               
+

+− +→+ eXX N
A
ZN

A
Ze 11

~ ,                                     (7а) 

 

                                  
−

−+ +→+ eXX N
A
ZN

A
Ze 11 .                              (7b) 

 

If we do not take into account the structure of the nucleus, then at the level of 

nucleons the processes described above represent the following fundamental 

transitions (at the quark level): 

 

                                        eepn ~++→ −
,                                           (8a) 

                                         

                                         eenp ++→ +
,                                             (8b) 

 

                                        enpe +→+−
.                                         (8c) 

 

β-decay of nuclei is possible in the case when the difference between the masses 

of the initial N and final N -nuclei converts the sum of the electron masses me 

and neutrinos mν.  
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     Energy conditions for −-, β+-decays and electron capture differ. When dis-

cussing the energy balance of these processes, we denote by m(Z,A) the mass of 

a neutral atom (not a nucleus). We will not take into account the neutrino rest 

mass due to its smallness. 

     −-decay. The −-decay energy Q- has the form  

 

  ( )  =++−+−−=−

22 )1(,1(),( cmmZAZmcZmAZmQ eee
 

 

  2),1(),( cAZmAZm +−= . 

                                       (9) 

 

This so-called quantity Q- in −-decay corresponds to the difference in the 

masses of the parent and daughter atoms. 

      +-decay. Similarly for  +-decay fair 

 

  ( )  =+−−−−−=+

22 )1(,1(),( cmmZAZmcZmAZmQ eee
 

 

  2),1(),( cAZmAZm −−= .                

(10) 

Since the atomic masses are used, the energy at rest of the electron and positron 

is also taken into account. 

     Electronic capture (EC). With electronic capture, it turns out 

 

    =−−−−+−= 222 )1(),1(),( cmZAZmmccZmAZmQ
eeEC

                    2),1(),( cAZmAZm −−= .                   (11) 

 

For the β-transition to occur, the corresponding quantity Q must satisfy the con-

dition 

 

                                .,,,0 ECiQi
+−=                         (12) 

 

 

It is seen that electron capture is energetically more preferable than β+-decay: 

 

                                 
22 cmQQ eEC −=+

.          (13) 
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     Emission of an electron is possible only when the mass difference between 

the parent and daughter atoms is at least not less than 2mec
2. Due to the fact that 

β+-decay and electron capture lead to the formation of the same daughter nucle-

us, electron capture is always a competing process for β+-decay. If the mass dif-

ference QEC is in the range from 0 to 2mec
2, then only electron capture is possi-

ble. Of course, in many cases, as a result of the β-transition, instead of the 

ground state of the daughter nucleus, its excited state is formed. An excited nu-

cleus usually passes into the ground state by the emission of -quanta or conver-

sion electrons. If the excitation energy exceeds the binding energy of a neutron 

or the fission barrier, then β-delayed emission of a neutron (proton) or β-delayed 

nuclear fission can occur. These processes are very important for the physics of 

reactors (delayed neutrons), as well as the synthesis of heavy elements in the 

Universe, etc. (see, for example, [1-22]). 

     When β+-decay is energetically possible, electron capture is also possible. In 

some cases, the so-called double beta decay can occur: А (Z,N)→ A (Z ± 2, 

N 2) with the emission of two β-particles and a neutrino pair, or without the 

emission of neutrinos.  

     The energy released during β-decay is distributed between the electron, neu-

trino and the final nucleus, and the overwhelming part is accounted for by light 

particles.  

     Therefore, the spectrum of emitted β-particles is continuous and their kinetic 

energy takes values from 0 to a certain boundary energy Е0, determined by the 

relation (see, for example, [3,5]): 

 

                           Е0 / с
2 =М (А,Z) - M( A, Z+1) - me - mν ,                          (14) 

 

where М – are the masses of the initial and final nuclei. 

     The foundations of the theory of beta decay were created by E. Fermi in 

1934. Fermi proceeded from the four-fermionic interaction of nucleons and lep-

tons by analogy with the effective electron-nucleon interaction in electrodynam-

ics. In this case, it is important that, in contrast to the electromagnetic interac-

tion, which is long-range, the four-fermionic Fermi interaction was contact (lo-

cal). The Hamiltonian of the Fermi nucleon-lepton interaction is written in the 

form (see, for example, [1,3]): 

 

                                             Hβ = Gβ ( p γ μ )n (
е  γ μ ) .                             (15) 
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Here Gβ – is the coupling constant (Fermi constant); Ψ – four-component wave 

functions of interacting particles, satisfying the Dirac equation; 
е =Ψ + γ0  – 

conjugate wave functions; γ μ – Dirac matrices, μ=0,1,2,3,4; γ0=γ0; γi=-γi 

(i=1,2,3). 

     In the original version of Fermi's theory, the nucleon-lepton interaction had a 

purely vector form. Later it became clear that the weak interaction Hamiltonian 

can be a combination of relativistically invariant terms formed from a scalar (S), 

a pseudoscalar (P), a vector (V), an axial vector (A), and a tensor (T). 

     The discovery of spatial parity nonconservation, the study of the correlations 

between the directions of emission of β-particles and neutrinos in β-decay of 
35Ar and 6He nuclei, as well as the angular distributions of electrons and neutri-

nos in the decay of polarized neutrons showed that β-decay is mainly realized in 

the V-A-variant. The effective β-decay Hamiltonian used in modern calculations 

was proposed by R.F. Feynman and M. Gell-Man in 1958 and is written in the 

following form:  

 

                                              Hβ = 
2

G  Jμ(x)Lμ (x) + h.с.                                 (16) 

 

Here h.с. – these are Hermitian conjugate terms; Jμ – nucleon current; Lμ – lep-

ton current; x – space-time coordinate; Gβ = Gμ  cosc, where Gμ – universal 

constant of weak interaction; multiplier cosc responds to processes without 

changing weirdness (c – so called Cabibbo angle); Constant Gβ =1,40 .10-49 

erg.cm3 was found experimentally.  

     The lepton current Lμ is a combination of V–A terms with equal weights and 

is expressed through the wave functions of the electron and neutrin: 

 

                                            Lμ (x)= е (x) γ μ (1+ γ 
5)

 
 ,                            (17) 

 

where γ 
5 = i γ 

0 γ
 
1 γ

 
2 γ

 
3.  The nucleon current Jμ is also a combination of the 

vector and axial-vector terms 

  

                                       Jμ =Vμ(x) - Aμ(x).                                          (18) 

 

It cannot be written out explicitly in terms of the wave functions of nucleons; 

however, the matrix elements of Vμ and Aμ between the nucleon states, which de-
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termine the characteristics of the nucleon-resonance, can be expressed through a 

small number of coupling constants gV, gM, gS, gp, gT (see, for example, [1-5]): 

 

 N  V ±(0)±  N =
NU  [ gV (q

2) γ 
μ +

Mc

qgM

2

)( 2

σμν q
ν+ gS (q

2)qμ ]τ± UN ,    (19a) 

 N  Aμ 
±(0)±  N = NU  [ gA (q

2) γ 
μ + gP (q

2)qμ +
Mc

qgТ

2

)( 2

 σμν q
ν]γ5τ 

± UN ,   (19b) 

 

where N, N – initial and final nucleons; U – Dirac bispinor (solution of the free 

Dirac equation); τ± – increasing and decreasing isospin operators, converting 

neutron to proton and proton to neutron; σνμ = 1/2 (γμ γν - γν γμ ); Ν = 0,1,2,3; 

qμ=(PN - РN )μ – transmitted fourth pulse; PN и РN – momenta of the initial and 

final states of the nucleon. From the hypothesis of conservation of the vector 

current it follows that: gV  gV (0) = 1, gS (q
2) = 0, gM (0) = μp – μn = 3,70, where 

μp,μn – abnormal magnetic moments of the proton and neutron in units nuclear 

magneton. Experimental studies of β-decay of nuclei have confirmed the hy-

pothesis of conservation of the vector current and obtain a limitation on the con-

stant gT, which characterizes the axial current of the second kind: gT /gА10-4. 

    The energies released during β-decay are small compared to mN c
2 (mN – nu-

cleon mass), therefore, it is natural to consider the transmitted fourth pulse qM 

equal to 0. Then the one-nucleon Hamiltonian Hβ is written in the form:  

 

                               Hβ = 
2

G {gV (1L0 – αL )- gA (γ5 L0 –σ L0}τ±.                        (20) 

 

Here gV and gA – vector and axial constants of nucleon-lepton interaction; 1 – 

single operator; α = γ0 γ – Dirac matrices; σ = - γ0 γ γ5 – Pauli spin matrices. As 

a result, the effective β-decay Hamiltonian is determined by two coupling con-

stants – the vector gV and the axial-vector gA. 

     Further development of the theory led to the creation of a unified theory of 

weak and electromagnetic interactions (and then the Standard Model), however, 

the existence of intermediate bosons has practically no effect on the theory of 

beta decay due to the smallness of the energy Е  10 MeV in comparison with 

mW c
2.  For this reason, in fact, the theory of electroweak interactions for β-decay 

is reduced to the theory of Feynman and Gell-Mann (see explanation and cita-

tion Refs. in [1-4]). 
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1.2  Main characteristics of β-decay. Classification of β-transitions. 

Selection rules 

As is known, the main characteristics of β-decay include the half-life Т1/2, 

the shape of β-spectra, β± - γ-angle correlations, etc. An analysis of the fT1/2 val-

ues, together with the selection rules (see below), makes it possible to determine 

the unknown values of nuclear spins and parities, i.e. is one of the important 

methods of nuclear spectroscopy (see, for example, [3]). Since the fT1/2 values 

are directly related to the matrix elements of β-transitions, they also contain in-

formation about the nuclear structure.  

     To determine the characteristics of beta decay, it is initially necessary to de-

termine the amplitude of the process, which is determined by the matrix element 

of the transition between the initial i and final f nuclear states:  

 

Мfi = <f | Hβ | i>.                                            (21) 

 

In the case of β-decay of a nucleon, the desired matrix element:  

 

Мfi = 
+

f (r1,… rA)Hβ (r1,…,rA)Ψi (r1,…,rA)d3 r1,…,d3rA,              (22) 

 

where the effective Hamiltonian of the process Hβ is equal to the sum of the 

terms describing the β-decay of individual nucleons that make up the nucleus:  

 

Hβ (r1,…, rA)=  =

= )(1 i

iAi

i rH  ,                              (23) 

 

where r – spatial coordinate of nucleons in the nucleus.  

     It should be emphasized here that the theory describes not only one-nucleon 

transitions. In the wave functions of the initial and final states of nuclei, it is 

possible to take into account the effects of a multi-nucleon structure, including 

the possibility of collective excitations of the nucleus [2-20]. Naturally, in this 

approximation, the so-called meband exchange currents, which describe the 

emission of the e
е~  (e+ νe) pair by virtual mesons, which are exchanged by nu-

cleons in the nucleus, are not taken into account. Also, the emission of a lepton 

pair by nucleons, which occurs due to the exchange of virtual mesons, is not 

taken into account.  

     In fact, taking into account the meson exchange currents lead to the many-

body operator Hβ. It should also be added that the contributions of the sought-for 
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meson exchange currents to the β-spectra and half-lives can reach several per-

cent. The β-particle spectrum is related to the matrix element Мfi by the follow-

ing expression [4]:  

 

                           N(E) dE =
752

2

2 c

G



  | Мfi |
2pE (E0 -E)2 dE,                        (24) 

 

where р and E – momentum and energy of the emitted β-particle;  

     In deriving expression (24), it was assumed that mν = 0 and the recoil energy 

of the final nucleus is negligible compared to E0. If Мfi does not depend on ener-

gy, then the shape of the β-spectrum is determined only by the "statistical" fac-

tor:  

 

                                               N(E) ~ pE (E0 - E)2.                                          (25) 

 

When calculating the matrix elements Мfi, a number of approximations are usu-

ally used, namely [3]: 1) the boundary energies Е0 are relatively small; therefore, 

the de Broglie wavelengths of the emitted leptons are large compared to the size 

R of the nuclei: pR |<<1, qR |<<1, those the wave functions of leptons vary 

slightly inside the nucleus; 2) being taken between nuclear states, some opera-

tors entering the formula for Hβ have matrix elements of the order 1, whereas 

others have matrix elements of order νN /c, where νN – characteristic velocity of a 

nucleon in a nucleus.  

     For light and medium nuclei, the parameter Ze2 |  c <<1. When calculating 

Мfi, an expansion in these small parameters is usually used. The neutrino wave 

function Ψν entering the lepton part of the matrix element Lμ(r) is described by a 

plane wave, i.e.:  

 

                        Ψν (r) ~ exp (- iqr |  ) ≈ 1 - iqr |   -1/2(qr |  )2+… .             (26) 

 

Since it is obvious qR | <<1, then inside the nucleus (r < R) Ψν (r) ≈ const, and 

upon integration over the volume of the nucleus, the neutrino wave function 

does not lead to the dependence Мfi from Е. In the approximation of neglecting 

the interaction of the emitted β-particle with the Coulomb fields of the nucleus 

and the electron shell of the atom, its wave function can also be represented as a 

plane wave, i.e.:  

 

                                                  Ψе (r) = exp(-ipr | ).                                      (27) 



 

17 
 

 

     Taking into account the Coulomb fields of the nucleus and the electron shell 

of the atom leads to a difference between the wave function and a plane wave; 

as a result, the wave function becomes dependent on the energy E even at 

pr|<<1. Note that initially this circumstance was ignored and this often prede-

termined a significant error in calculating the characteristics of beta decay [4]. 

To take into account the influence of the Coulomb interaction of the emitted β-

particles on their energy spectrum, the so-called Coulomb correction factor is 

introduced, which is determined by the known Fermi function F(Z,E). When 

pr|<<1 this factor is usually defined as the square of the ratio of the β-particle 

wave functions calculated with (Z ≠ 0) and without (Z = 0) the Coulomb field of 

the nucleus at the center (r = 0) or at the periphery (r = R) of the nucleus, i.e. 

[4,12,13]: 

 

                                      F(Z,E)=| Ψе |
2

z / | Ψe |
2

0.                                       (28) 

  

    The approximation, in which only the leading nucleon contributions to the 

Hamiltonian Hβ  are taken into account, and the lepton wave functions inside the 

nucleus are assumed to be independent of coordinates, is called allowed in the 

theory of beta decay. In this approximation, the spectrum of β-particles is de-

scribed by the expression: 

 

                 N(E) dE = 
73

45

2 

cme Gβ F(Z,E  + 
2222 |||1| AgVп  

                  

                                          х E 12 −E  (E0 –E)2dE.                                         (29) 

 

Here the energy is expressed in units of mec
2 (me – is the electron mass); 

 

 = if iA

i ||1 )(

1  , 

                                  = if iiA

i || )()(

1  .                        (30) 

 

   

The first relation corresponds to the vector interaction CV and is called the Fermi 

matrix element, and the second relation corresponds to the axial-vector interac-

tion CA and is called the Gamow-Teller matrix element. In the general case, it is 
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not possible to determine | i >, < f | which correspond to the initial and final 

states of the nucleus.  

     However, if we take the spin I and parity π of the states of the nucleus, be-

tween which the β-transition is observed, as a basis for consideration, then we 

can derive selection rules (see below) for the nuclear matrix elements that arise 

in the series expansion of the interaction Hamiltonian and, in particular, the 

above nuclear matrix elements. Functions | i > and < f | can be formally repre-

sented: 

 

                                    | ( )i ii iI M=  ,                                     (31a) 

 

                                   | ( )f ff I M f =  ,                               (31b) 

 

where Ii, If – the initial and final spins of the states of the mother and daughter 

nuclei, between which there is β-transition; Mi, Mf   – their projections respec-

tively; i , f  – quantities that include all the remaining characteristics of the nu-

clei. This approach allows us to rewrite the expression for nuclear matrix ele-

ments in the form: 

 

                                    ( ) ( )
1

1
A

s

f f i i

s

I M f iI M

=

=                      (32a) 

  

                                ( ) ( )
1

A
s s

f f i i

s

I M f iI M

=

= σ σ                  (32b) 

 

     To obtain selection rules for the total angular momentum of a lepton pair J, it 

is necessary to use the Wigner-Eckart theorem, which allows one to separate the 

parts associated with the spin projections from the corresponding nuclear matrix 

elements and proceed to the consideration of the reduced matrix elements (see 

below).  

     Further, it is important to note that it is obvious that the Coulomb field of the 

nucleus increases the probability of the emission of electrons and decreases the 

probability of the emission of positrons in the low-energy region. In addition, 

when the Fermi factor F (Z, E) is taken into account, the probability of electron 

emission during beta decay at the lower boundary of the β-spectrum does not 

vanish, but tends to a finite value. The influence of the Coulomb factor on the β-
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spectra and the probability of beta decay increase with increasing Z and decreas-

ing Е0. When calculating F (Z, E), it is also necessary to take into account the 

screening of the nuclear charge by atomic electrons (it is especially important in 

the case of β+-decay). 

     It should be emphasized here that this effect has not yet found an adequate 

quantitative description in modern calculations (e.g. [1-13]. In many papers (e.g. 

[1-30] the possibility of influencing the processes of nuclear decay with the par-

ticipation of electrons of the atomic shell (K-capture and internal conversion) by 

ionizing the atom was considered. In the German research center GSI, it was ex-

perimentally shown that the effect of the presence or absence of electron shells 

in an atom can significantly change the entire decay scheme and, accordingly, 

the quantitative characteristics (e.g. [3]). 

     The total probability W of beta decay per unit time can be obtained by inte-

grating (29) over energy and has the form:  

 

                              W= 
73

45

2 

cme  Gβ  fAgVg  + 2222 |||1|  ,         (33a) 

 

                                   f =  ),(0

1 EZF
E  E 12 −E  (E0 –E)2dE.                    (33b) 

 

In the case of neglecting the interaction of the emitted β-particle with the Cou-

lomb field of the atom, one can obtain: 

 

f| Z=0 =  0

1

E  E 12 −E  (E0 –E)2dE=  

 

                           = )1ln(
4

]
15

2

20

3

30
[1 2

00
0

2

0

4

02 −++−−− EE
EEE

E .                   (34) 

 

 

The f value is calculated using the tabulated values of the Fermi function F(Z, E) 

[3,12]. In the general case, F(Z,E) is defined as the ratio of the probabilities of 

finding an electron at a certain point with Z = 0 and without Z ≠ 0 taking into 

account the field of the atom: 

 

                                      ( )
2 2

0 0
,

Z Z
F E Z  

 =
= .                               (35) 
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A remarkable feature of the allowed transitions is the fact that all nuclear β-

moments are concentrated in one factor, and the energy dependence is due only 

to a statistical factor and a function F(Z,E).  

     Thus, in the expression for the normalized β- and  -spectra, the factor  

 
2 2 2 21V AC C   +   σ  

 

can be taken out from under the integral sign, and after abbreviations, the final 

expressions for calculating the spectra of allowed transitions can be obtained. By 

definition, the half-life Т1/2 is related to the beta-decay probability W by the 

standard ratio: 

 

                                          W=ln2/ T1/2 .                                                 (36) 

 

Then you can write: 

 

                                            f Т1/2= k /   + 2222 |||1| AgVg ,              (37) 

 

where k = 2π3ln 2 7/me
5c4Gβ

2= Gβ
-2 ·12306 s. The fТ1/2 value is usually called 

the comparative half-decay period and plays an important role in the classifica-

tion of β-transitions (see below). The function f takes into account the depend-

ence of the beta decay probability on E0 and Coulomb effects; therefore, fТ1/2, in 

contrast to the standard half-life Т1/2, depends only on Мfi. 

     Next, we briefly consider the main classification of β-transitions. It should be 

noted right away that beta decay is characterized by a wide range of changes in 

the half-lives of Т1/2, usually from 10-2 s to 1016 years. Such a significant varia-

tion in the Т1/2 values is explained by several reasons. First of all, this is due to 

the fact that the half-life strongly depends on E0 (at E0>>mec
2, W~ E0

5), and the 

value of E0 varies widely from 2,64 keV for the 187Re→187Os transition to 13,43 

MeV for 12В→12С. On the other hand, depending on the spins and parities of the 

initial and final nuclear states, various terms in the effective beta decay Hamil-

tonian, whose matrix elements have different orders of magnitude, contribute to 

the process amplitude. Finally, the lepton pair emitted during beta decay can car-

ry away different orbital angular momentum.  

With an increase in this moment, due to the centrifugal effect, the values 

of the wave functions of leptons in the intranuclear region, and, consequently, 
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the overlap integral of wave functions, which determines the matrix element Мfi  

Accordingly, all β-transitions are divided into allowed and forbidden. 

     Let's consider the allowed transitions first. In the allowed approximation, the 

wave functions of leptons inside the nucleus are constant, and leptons do not 

carry away the orbital angular momentum.  

Moreover, if the spin of the nucleus does not change, then the total spin 

carried away by the lepton pair is also equal to 0. Such transitions are called 

Fermi transitions.  

     In the case when the vector change in the nuclear spin (the total spin carried 

away by the lepton pair) is equal to 1, then, by definition, these transitions are 

called Gamow-Teller. The parity of nuclear states in allowed β-transitions does 

not change. As a result of the selection, the rules limiting the change in the total 

moment I and the parity π of the nucleus, in the case of allowed transitions of 

the Fermi type, are written in the form: ΔI = | If –Ii |=0; Δπ ≡ πf πi =+1. For 

Gamow-Teller transitions, similar selection rules are: ΔI=1, Δπ =+1. 

 

Table 1 − Characteristics of some super-allowed β-transitions 

 

Transition fi

fi II


→  
Т1/2  Е0, keV fT'1/2 

n→ p 
3H→3He 
6He→6Li 
17F→17O 

35Cl→35Ar 
14O→14N 
34Cl→34S 

42Sc→42Ca 
46V→46Ti 

50Mn→50Cr 

½+→½+ 

½+→½+ 

0+→1+ 

5/2+→5/2+ 

3/2+→3/2+ 

0+→0+ 

0+→0+ 

0+→0+ 

0+→0+ 

0+→0+ 

 

11,7+0,3 min 

3,87.  108 s 

0,813±0,7 s 

66,0±0,5 s 

1,804±0,21 s 

71,36±0,09 с 

1,565±0,07 s 

0,6830± 0,0015 

s 

0,4259±0,0008 s 

0,2857±0,0006 s 

 782±1 

18,65±0, 

3500±2,0 

1748±6 

4948±30 

1012,6±1,4 

4460±4,5 

5409±2,3 

6032,1±2,2 

6609,0±2,6 

1187±35 

1132±40 

808±32 

2380±40 

5680±400 

3066±10 

3055±20 

3077±9 

3088±8 

3082±9 

 

     Further, in the modern classification, allowed transitions are subdivided into 

super-allowed and hindered. The first include transitions between nuclear states 

with similar wave functions, as a result of which the integrals of their overlap 

are large (∫ ~ 1, ∫σ ~ 1), and the values fТ1/2 take minimum values. The super-

allowed transitions include, in particular, transitions between states belonging to 

the same isomultiplet (between analog states of nuclei). For supersolved β±-
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transitions, ∫1 can be calculated exactly [2-4]. The fact is that =

iA

i 1
=T±, where 

T is the isotopic spin of the initial nucleus. Wherein: ∫ 1 = [(T   T3) 
. (T ± T3 

+1)]1/2. Here Т3 is the isospin projection for the initial nucleus, numerically 

equal to ½ (Z - N) (it is assumed that the β-transition occurs between pure iso-

spin states; taking into account the meson exchange currents does not change 

this result, which is due to the conservation of isospin).  

     In the case of super-allowed transitions 0+→0+ between neighboring terms of 

the isomultiplet: ∫σ = 0 and, at Т = 1: ∫1 = 2 .  

     For such super-resolved transitions, the f Т1/2 values should be the same, 

which is in good agreement with available data (see Table 1) [2,3]. Relation (37) 

allows you to determine the value of Gβ from the measured values of f Т1/2 for 

0+→0+ transitions: 

 

                        Gβ = (1,4057 ± 0,0016 ± 0,0070) . 10-49 erg. cm3.                 (38) 

 

     Further, we note that the Gamow-Teller transitions 0+→1+ are characterized 

by a single matrix element ∫σ≠0 and can be used to obtain information on the 

value of the axial-vector coupling constant gA. The most accurate value gA= -

1,254±0,007 was obtained from the data on β-decay of the neutron. 

The so-called hindered transitions differ from the super-allowed transi-

tions by a relatively weak overlap of the wave functions of the initial and final 

nuclear states, as a result of which the matrix elements turn out to be small com-

pared to the matrix elements of the super-allowed transitions [2-4]. An example 

of hindered transitions is the 0+→0+ transitions between states belonging to dif-

ferent isospin multiplets. Such transitions satisfy the Fermi-type selection rules 

ΔI=0, Δπ=+1б, and are described by a single matrix element ∫1. If the initial and 

final nuclear states are pure isospin states belonging to different isomultiplets, 

∫1=0 and the transition probability W=0.  

It should be remembered that the Coulomb interaction in nuclei violates 

isotopic invariance. Then the nuclear states (especially in heavy nuclei) are not 

pure and contain impurities of states with a different isospin. As a result, the ma-

trix elements of such transitions are not equal to 0. They are small compared to 

the usual allowed matrix elements, although the spin and parity selection rules 

are satisfied. 

     Another type of -transitions is called forbidden transitions. Selection rules 

for matrix elements of forbidden transitions are derived similarly to the case of 

allowed transitions, while the expression for the matrix element after applying 
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the procedure for separating the reduced matrix elements (β-moments) has a ra-

ther complicated and inconvenient form for practical use. To simplify it, the so-

called normal approximation is used, based on the fact that nuclear β-moments 

have different orders of magnitude. The small parameters by which these quanti-

ties are estimated are: nucleon velocity VN, nucleus radius R, Coulomb smallness 

parameter aZ.  

The order of smallness of the β-moments included in the expansion of the 

matrix element determines the degree of inhibition of β-transitions. 

Forbidden transitions include transitions in which a lepton pair carries away the 

orbital angular momentum and (or) the main contribution to the process ampli-

tude is made by small matrix elements from the operators γ5,α  in the effective 

Hamiltonian Нβ. Forbidden transitions are classified according to the degree of 

smallness of the matrix element. Transitions of the first order of exclusion in-

clude transitions described by matrix elements ∫α, ∫r, ∫γ5, ∫[σr], ∫(σr), ∫Вij, where      

 

                         ∫α=<f | =

ааА

а 1
|i>; ∫r =<f | =

ааА

а r 1
| i > etc.,  

 

                        Вij≡σixj+σjxi2/3(σr)σij; i, j = 1,2,3;  

 

xi – vector component r. 

The first 2 matrix elements are due to the vector current, the rest - to the 

axial one. Matrix elements containing the value r arise when a lepton pair carries 

away the orbital angular momentum 1. Selection rules for matrix elements ∫γ5, 

∫(σr) are as follows: Δ I = 0, Δπ = -1. For ∫α, ∫r and ∫[σr], the selection rules are: 

ΔI Δπ = 1-, 0- (transitions 0↔0 are prohibited). 

     In the transitions described by matrix transitions of the first forbidden, the 

lepton pair carries away the total moment 2, and the selection rules are as fol-

lows:  ΔIΔπ = 2-, 1-, 0- (forbidden transitions 0↔ 0, 0↔1, 1/2↔ ½). The matrix 

elements ∫γ5 and ∫α are of order of smallness (νN/c). For matrix elements contain-

ing r, it is natural to expect that the order pR|ħ ≤ E0R|ħc. However, this is only 

true for unique transitions. For the rest of the matrix elements, in the case when 

the nuclear charge Z satisfies the so-called ξ-approximation ξ ≡ (Ze2/rE0) >> 1) 

[4], Coulomb effects lead to an increase in the wave function of the electron in-

side the nucleus. As a result, these matrix elements are of the order of smallness 

Z/137 rather than pR|ħ. Note that the condition ξ >>1 holds for most β-

transitions. With an increase in the order of exclusion, the number of the 

corresponding matrix elements that determine the transition probability 
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increases, and the difficulty of analyzing the experimental data increases; in this 

case, the matrix elements themselves decrease in order of magnitude [4]. 

Selection rules for β-transitions of the nth order of prohibition: Δπ = (-1)n, ΔI ≤ n  

for ordinary transitions and ≤ n +1 for unique transitions. With an increase in n 

and a decrease in matrix elements, the value of fT1/2 increases.  

Although the range of its variation is narrower than for T1/2, it turns out to 

be quite large, so here it is convenient to characterize β-transitions by the value 

lg f T1/2 (see Table 2). 

 

Table 2 – Selection rules for β-transitions of various types 

Transition type Selection 

rules 

lg fT1/2 lg fnT1/2 

Allowed over-

authorized 

hindered 

 

Forbidden 

first ban …. 

 

uniquefirst ban …. 

 

second ban 

 

unique second 

prohibition …. 

 

third ban 

 

unique third prohi-

bition …. 

fourth ban 

ΔI =0,1 

Δπ=+1 

 

ΔI =1,0 

Δπ=-1 

ΔI =2 

Δπ=-1 

 

ΔI =2 

Δπ=+1 

ΔI =3 

Δπ=+1 

 

ΔI =3 

Δπ=-1 

ΔI =4 

Δπ=-1 

ΔI =4 

Δπ=+1 

3,5±0,2 

5,7±1,1 

 

7,5±1,5 

 

 

 

 

 

12,1±1,0 

 

 

 

18,2±0,6 

 

 

22,7(115ln) 

 

 

 

 

 

8,5±0,7 

 

 

 

 

11,7±0,9 

 

 

 

 

15,2(40K) 

   

   Further, before proceeding to a detailed analysis of the current state of calcula-

tions of the characteristics of beta decay, we note some experimental aspects of 

the problem, following [2,4]. Usually β-spectra are experimentally investigated, 

as a rule, using beta-spectrometry. In the case of allowed transitions, the β-

spectra are described by the expression: 
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                                    N(E)dE ~ F(Z,E )pE(E0 – E)2dE.                               (39) 

  

     To study β-spectra, so-called Curie plots are usually used, which depict the 

dependence of the quantity К ≡ [N(E)F(Z,E)pE]½ from Е.  

     For allowed transitions, the Curie graph has the form of a straight line seg-

ment intersecting the abscissa axis at the point Е=Е0. More precisely, the shape 

of the observed spectrum is:  

 

                     
2

0

2

753

2
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2

)( eeee TEpEiHf
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V
EN −= 

 
.(40) 

 

This expression qualitatively explains the shape of the observed β-spectrum and 

is usually used for the experimental determination of the boundary β-decay en-

ergy. After dividing the left side of (40) by Eepe, and then extracting the square 

root of this value, you can get a function that is linearly dependent on the kinetic 

energy of the electron Te. The graph of this function, the Curie graph is de-

scribed by the equation: 

 

                     ( )e

ee

e TEiHfconst
pE

EN
−=





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



0

2
21

)(
 .          (41) 

 

The graph is a straight line only if the matrix element really does not depend on 

the electron momentum, which occurs in the case of allowed β-transitions. It is 

very convenient to find the boundary β-decay energy E0 from the graph, since 

the function should vanish exactly at E0. The deviations from the linear depend-

ence can be used to study with very good accuracy the influence of corrections 

due to the nonzero neutrino mass. 

     So far, the spectrum has been calculated under the assumption that m=0. 

With a finite neutrino rest mass, one should expect a change in the shape of the 

spectrum in the region of maximum values of the energy variable, since the neu-

trino mass is small (m<< me). In particular, the end point of the β-spectrum 

Emax, equal to the maximum possible kinetic energy of an electron, will be shift-

ed by the amount of the neutrino rest energy 2
0max cmEE −= . 

     Differences in the transition from the allowed one leads to violation of the 

linearity of the Curie graph. The beta spectra of forbidden transitions can differ 
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significantly from the allowed spectra due to the presence of energy-dependent 

terms in the matrix element. This effect is usually taken into account by intro-

ducing an energy-dependent spectral form factor S(E) into the right-hand side of 

expression (39). For unique first-forbidden transitions (neglecting Coulomb ef-

fects), this factor has the form: S ~ [(E2 - me c)2 + (E0 - E)2]. 

     Unique transitions of the nth prohibition are usually not characterized by the 

values fT1/2, but fnT1/2, where fn is determined by a formula of the form (33b), and 

then the form factor Sn(E) is introduced into the integrand (see also Table 2). 

The energy spectra of ordinary (not unique) first-forbidden transitions are, as a 

rule, close to the allowed ones. Matrix elements ∫γ5 and ∫α practically do not con-

tain dependence on the lepton energy; for matrix elements ∫ r, ∫ (σr) and ∫ [σr], in 

the case ξ >> 1 the spectral form factor does not depend on energy due to Cou-

lomb effects. An exception is some β-transitions of the 1st forbidden, in which 

the main energy-independent terms in the matrix element cancel each other out 

and small corrections depending on the energy begin to play a significant role. 

This situation is realized, for example, in the case of the β-decay of 210Bi (Ra E) 

[2,4]. 

     In many cases, beta decay occurs not into one state of the daughter nucleus, 

but into two or more states.  

In this case, the experimentally observed β-spectrum is composed of two 

or more partial spectra with different values of the boundary energies. Such β-

spectra are usually called complex.  

Investigation of β-spectra near Е0 allows obtaining information on the 

neutrino mass mν. In the case mν ≠ 0, the spectrum of allowed transitions should 

differ from (39) and should have the form: 

 

                         N(E)dE ~ F(ZE)pE(E0 - E)[(E0 - E)2 - (mν c
2)2]1/2.                   (42) 

 

Hence it follows that the shape of the spectrum near E0 depends substantially on 

mν.  

The difference between mν and 0 can lead to a deviation of the Curie plot 

in the region E0 from the linear one. In fact, to determine mν, it is necessary to 

compare the Curie plot with those calculated at different values of mν, depending 

on К(Е). β-spectrum studies 3Н (Е0 = 18б61keV) gave mν < 35 eV/s2. Results 

obtained with emission of the β-spectrum 3Н: 14 eV< mν < 46 eV need further 

confirmation.  

The current state of this problem has been described in Refs. [2,3]. 
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1.3  Theoretical method. Relativistic Many-body Perturbation Theory 

1.3.1 Determination of the probability of beta decay. Allowed and over-

allowed transitions 

         As is known [4], the perturbation theory method is usually used in calcu-

lating the probability of β-decay, since the corresponding interaction constant g 

is characterized by significant smallness. For this well-known reason, in prac-

tice, the calculations are limited to taking into account only first-order terms cor-

responding to direct transitions from the initial state to the final state. The prob-

ability of a system transition from an initial state |ξ > with energy Eξ to a certain 

final state < f | with energy Ef per unit time under the condition E0 = Ef - Eξ is 

determined by the well-known expression: 

 

                     

0

22
| |f

E E

dN
dW f H

dE





=

=   ,                  (43) 

 

where, naturally, the matrix element is determined by the form of the interaction 

Hamiltonian H and the wave functions of the initial ψξ and final ψf states of the 

nucleus: 

 

         3 3

1| | f Af H H d r d r    =  .               (44) 

 

     The determination of the square of the matrix element is reduced to integra-

tion over the volume of the kernel and averaging over all unobservable varia-

bles.  

The quantity 

0E E

dN

dE
=

determines the density of the final states of the system per 

unit of energy. The expression for the number of −,  -particles with energies in 

the range from E to E + dE: 

 

             ( )
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          ( ) ( )
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0 03 7 5

1
| |

2
fdW f H E E m c E E E dE

c
     


=   − − − .  (45b) 

 

     In what follows, we restrict ourselves to considering allowed and over-

allowed transitions. It is generally known that allowed transitions make the most 

significant contribution to the total spectrum of β-decay of a nucleus, while the 

contribution of forbidden transitions usually amounts to only a few percent of 

the total intensity. The specific contribution of these and other transitions to the 

β-decay probability is usually described using in the expression for the Hamilto-

nian of the interaction and the β-decay probability of the expansion of the lepton 

current in a series in terms of small parameters characteristic of β-decay (see [2-

3]). Where the zero term of such an expansion describes the most intense al-

lowed β-transitions, and the next terms of the expansion correspond to forbidden 

transitions of various degrees of forbiddenness. 

     Let us consider further the allowed transitions in more detail. The energy dis-

tribution of β-particles in this case has a standard form: 

 

            .||)(),(
2
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3
MEEpEZEFGdEEdW F −=


    (46) 

 

Е0=1+(Егр/mec
2), 

 

 

Here GF – is the weak interaction constant; Е, р=(Е2-1)½ – total energy and mo-

mentum of a β-particle; (Егр – β-spectrum boundary energy); |M| – energy-

independent matrix element for allowed β-transitions. F – the well-known Fermi 

function, which is equal by definition: 

 

                                   )(
2

1
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2
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p

ZEF ,                       (47) 

 

where are the icons ±1= κ, κ = (l-j)/(2j+1).  

     In (47), functions f+1 and g-1-relativistic electron radial wave functions ap-

pear, which are calculated at the boundary of a spherical nucleus with radius R0 

(see, for example, [2,4]) or the values of these functions at zero (amplitudes of 

the expansion of functions in a series at zero), as done in [3,12,13). In our calcu-
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lations, we use the latter option everywhere. The corresponding integral Fermi 

function f is given by the definition: 

 

                          .)(),(),( 2
0

1
0

0
dEEEpEZEFZEf

E

−=         (48) 

 

The half-life of beta decay in this notation is: 

 

                                       Т 
½ = 2π3 ln2 / [G2|M|2 f(E0,Z)].                                (49) 

 

An important point of the theory is the correct normalization of the relativistic 

electron radial functions fκ and gκ, at which, for large values of the radial varia-

ble 

 

                                   g (r)→r -1[(E+1)/E]1/2 sin(pr +),                             (50a) 

 

                                 f (r)→r -1(/||) [(E-1)/E]1/2 cos (pr+).                        (50b) 

 

     A detailed description of the methodology for calculating the electronic and 

nucleon wave functions within the framework of the formalism of the relativistic 

nuclear and QED TV is given in reviews [21-46] (see also [47-61]). Here, we 

note that the numerical solution of all equations, as well as the entire calculation 

of the characteristics of β-decay and atomic corrections were performed on the 

basis of a modified numerical complex "Superatom-M". The functions of the 

continuous spectrum were found iteratively in the field of the daughter atom. 

The condition for the self-consistency of the functions of the continuous spec-

trum is reduced to the fact that the normalized functions at two adjacent itera-

tions differ by less than 10-5 in relation to their values at the maximum point of 

the function. For different energies, to achieve the required accuracy, it was re-

quired from 3 (at higher energy) to 11 (at low energy) iterations.  

     When calculating the normalizing factor, the procedure of averaging over the 

oscillation period of the continuous spectrum function was used (the matching 

condition included the difference between the values of the averaged normaliz-

ing factors at two adjacent periods of no more than 0,025%).  

     To achieve the required accuracy, the Dirac equations were integrated (on a 

semilogarithmic scale) to the distances from the core, at which the continuum 

function passes 6-8 periods. As usual, when calculating the integrals of strongly 
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oscillating functions, the damping factor exp (-dr) was introduced, the value of 

the parameter d in which was chosen based on the accuracy requirement at a 

level of ~0,005%. 

1.3.2 Combined Nuclear and Relativistic Many-body Perturbation 

Theory  

Here we present a brief description of the key moments of our approach (more 

details can be found in refs. [21-60]). Fundamental spacts of accouting for the 

QED radiative corrections and physical nature of these ones is described in Refs. 

[61-85]. Within our approach, the electron wave functions zeroth basis is found 

from the generalized Dirac-Koihn-Sham equation solution with a mean-field 

self-consistent potential: 

 

                     ( ) [ ( ) ( ) ( | )]DKS D

MF Coul X CV V r V r V r V r b= = + +                      (51) 

 

Here ( )D

CoulV r  is the standard Coulomb-like potential, ( | )CV r b is a correlation potential  

(the known Lundqvist-Gunnarsson-like definition for  ( | )CV r b  with ab intio opti-

mization parameter b is used; for details, see below and Refs. [10,48-52]) and 

( )XV r  is an exchange potential [2].  

     The known Kohn-Sham definition for ( )XV r  is as follows (in atomic units): 

 

                       

2 1/2

2 1/2

3 [ ( 1) ] 1
[ ( ), ] ( ) { ln },

2 2( 1)

KS

X XV r r V r
 


 

+ +
=  −

+                      (52) 

 

where  

               
2 1/3[3 ( )] /r c  = .                              (53) 

 

In order to describe a nuclear subsystem we use the known relativistic mean-

field model [2,3]. In concrete calculation the most preferable version of this 

model is so called NL3-NLC version (c.g., Ref. [2,3,16,62]).   

     The total relativistic Dirac Hamiltonian for a multielectron system has the 

following form [2,10]:  
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    
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i

ii /rαrirZccpH )1)(||exp(}/{ 2   ,       (54) 

 

where i ,j are the Dirac matrices, ij is the transition frequency. It should be 

noted that the magnetic interaction in the lowest order on parameter of the fine 

structure constant 2 ( is the fine structure constant) as well as the retarding ef-

fect are taken into account in the relativistic interelectron interaction potential.    

    As it is indicated earlier, all correlation corrections of the second order and 

dominated classes of the higher orders diagrams are taken into account within a 

formalism of many-body perturbation theory [2,3,10].  

     The principal important piont of a total approach is in using a generalized 

relativistic energy approach to construction of an optimized basis set of electron 

wave functions. According to Glushkov-Ivanov-Ivanova method [48,49,52,53] 

optimization of electron wave function set and gauge invariance performance 

can be reached by means of the minimization of contribution into imaginary part 

of radiation width Im E for the multi-electron system due to the QED perturba-

tion theory fourth order Feynman diagrams ones. The detailes of a whole proce-

dure can be found in Refs. [2,3,10,48,49,52,53].   

     The next very important aspect of a whole procedure is an accurate consider-

ation of the QED or radiation corrections. There are developed a few accurate 

methods of accoutnig fior the QED corrections. In our approach we use the gen-

eralized procedures, described in detail in Refs. [2,10,50,63,67].  

     In order to account for a vacuum polarization effect, the generalized Uehling-

Serber potential approach is used and modified to account for the high-order ra-

diative corrections according to the procedure [2,10]. It can be represented in the 

following form:  

 

                 ( ) ( )( ) ( )

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2
gC

rt

t
tZrtdt

r
rU          (55) 

 

where g=r/(Z).  

A more correct and consistent approach is presented in Refs. [2,10]. Taking into 

account the nuclear finite size effect modifies the potential (55) as follows:  

 

                    ( ) ( )
( )2 2

3

2 2
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2 1 1
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FS rt
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Other details of the general method and PC code are described in Refs. [2,10,21-

45]. All calculations are performed with using the numeral codes SuperAtom 

(Nucleus) (modified versions 93) [21-61,85-108]. 

 1.4   Results  

Characterization of a number of allowed beta transitions and the results of 

calculating the characteristics of beta decay.   The following beta decays were 

selected as objects of study, the results of which will be presented below (their 

characteristics are given in Table 3): 33P→33S, 35S→35Cl, 45Ca→45Sc, 

63Ni→63Cu, 106Ru→106Rh, 155Eu→155Gd, 241Pu→241Am. 

     Most of the considered beta decays belong to the number of transitions with a 

low boundary energy and correspond to different ranges of values of the atomic 

nucleus charge Z (see Table 1). Almost all transitions, the characteristics of 

which are given in Table 1, are allowed (as well as super-allowed). The choice 

of such transitions, naturally, is determined by the important circumstance that 

for such transitions the formulas for the decay probability are exact. 

     Of course, for forbidden beta transitions, the theory naturally becomes more 

complicated. The corresponding formulas are more complicated than in the case 

of allowed transitions and should generally contain six nuclear matrix elements. 

A detailed presentation of the theoretical aspects of their calculation is given, for 

example, in [2,4].  

     In the so-called ξ-approximation known in the theory of beta decay, where 

the parameter ξ is introduced, determined by the expression: ξ = αZ / 2R0 >>1, 

(Z – the nuclear charge, R0 – the radius) usually neglect small terms, and the re-

maining sum of nuclear matrix elements does not give an additional dependence 

on the lepton energy and turns out to be analogous to the allowed case. Moreo-

ver, it is written as a constant factor |M|2.  

     Recall that if the condition ξ-approximation ξ >>1 is satisfied, the Coulomb 

effects lead to an increase in the wave function of the electron inside the atomic 

nucleus, as a result of which these matrix elements are of the order of smallnes 

~Z/137 , and no pR|ħ. At the same time, it is well known that the sought condi-

tion ξ >> 1 turns out to be satisfied for most β-transitions.  

     Returning to the transition 241Рu→241Аm, it should be noted that this transi-

tion is not a unique one of the first ban. The parameter ξ for the decay of pluto-
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nium is ξ = 18 (i.e. ξ >> 1). It is well known that for the overwhelming majority 

of such first-forbidden transitions the formulas for the decay probability are ap-

plicable with a sufficiently high degree of accuracy.  

 

Table 3 – Characteristics of a number of allowed β-transitions lg ft 

 

 

Decay 

 

 

Zmat → 

Zdaught 

fi

fi II


→   

Type 

 

Е0, 

keV 

 

Т1/2 

 

lg ft 

33P→33S 
35S→35Cl 

45Ca→45Sc 
63Ni→63Cu 

106Ru→106Rh 
155Eu→155Gd 
241Pu→241Am 

15→16 

16→17 

20→21 

28→29 

44→45 

63→64 

94→95 

1/2+→3/2+ 

3/2+→3/2+ 

7/2- →7/2- 

1/2-→3/2- 

0+→ 1+ 

5/2+→3/2+ 

5/2+→3/2- 

Allowed  

«» 

Above 

«» 

«» 

«» 

First ban 

249 

167,4 

257 

65,8 

39,4 

140,7 

20,8 

25,3 

days 

87,4 

days 

165 

days 

100 

days 

367 

days 

4,9 

years 

14,4 

years 

5,0 

5,0 

6,0 

6,6 

4,3 

7,4 

5,8 

 

In [3], the results of a test calculation of the probabilities and half-lives Т1/2 of a 

number of super-resolved beta transitions, in particular, 34Cl→34S, 42Sc→42Ca. 

Recall that for superallowed β±-transitions ∫1 can be calculated exactly ∫1=[( T ± 

T3)
 .(T ± T3 +1)]1/2, where Т3 – isospin projection for the initial nucleus, numeri-

cally equal to ½ (Z – N).  

     If the β-transition occurs between pure isospin states, then taking into ac-

count the meson exchange currents (as a rule, contributing to a few percent) 

does not change this result, which is due to the conservation of isospin. 

In the case of super-allowed transitions 0+→0+ between neighboring terms of the 

isomultiplet ∫σ=0 and, at Т=1, ∫1= 2 . For such super-allowed transitions, the f 

Т1/2 values are almost the same. 

     The performed calculation (the well-known Gauss model was used to deter-

mine the charge distribution in the nucleus) gave the following values of the 
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half-lives for the transitions 34Cl→34S (1,55 s), 42Sc→42Ca (0,67 s). The sought 

data are in good agreement with the experimental values (respectively: 

1,5650,007 s; 0,6830,002 s). For comparison, we present similar calculation 

data in the framework of the standard model of the Dirac-Fock atom (1,52; 

0,64), as well as in the framework of the Hartree-Fock-Slater method (1,4; 0,6) 

[12,13]. Thus, in the approach proposed by us, it is more correct to take into ac-

count exchange-correlation and other effects. As you can see, the accuracy of 

calculations within the framework of the standard and optimized DF method is 

quite acceptable. It seems important to study in more detail the influence of the 

choice of the atomic field on the values of the Fermi function. 

Results of computing an effect of an atomic field type choice on the beta 

decay characteristics.  Further we present the results of evaluating the influence 

on the Fermi function of the choice of the type of atomic field, which is deter-

mined in different ways in different calculation methods. Note that in a number 

of works (see, for example, Refs. [2-13]) various methods were used to calculate 

the characteristics of beta decays, in particular, the method of the self-consistent 

nonrelativistic atomic field of the HFS, the method of the relativistic self-

consistent field of the HFS (taking into account relativistic corrections in the 

Breit-Pauli approximation), the classical and improved versions of the Dirac-

Fock method (ODF). 

     In order to compare different approaches, the calculation of the Fermi func-

tion F(E,Z) was carried out under conditions similar to [12,13], namely, in all 

cases the values of the functions on the boundary of the kernel R0 =1,202 А1/3 

fm with the same A. The corresponding numerical results of the influence of the 

choice of the field (HFSrel, HFSnonrel, N-QED) on the Fermi function F(E,Z) for 

various beta decays are given in Tables 4, 5. The parameters were calculated as 

test values: 

 

          Δ1 = {[ FHFSrel  (E,Z) / FHFSnonrel  (E,Z) ] - 1} . 100%,                 (57a) 

 

            Δ2 = {[ FODFrel  (E,Z) / FHFSnonrel (E,Z) ] - 1} . 100%,                 (57b) 

 

where  FHFSrel (E,Z) – Fermi function in atomic field HFSrel; FHFSnonrel (E,Z) – 

Fermi function in atomic field HFSnonrel; FODFrel (E,Z) – Fermi function in atomic 

field N-QED. Note also that in all three calculations, the effect of the finite size 

of the nucleus was taken into account within the framework of the model of a 

uniformly charged ball. As the calculation has shown, the use of the alternative 
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Gauss model has practically no effect on the results obtained, although it is more 

convenient computationally. 

 

Table 4 - Effect on the Fermi function F(E,Z) for β-decay choice fields 

(HFSrel, HFSnonrel, ODF): values Δ1 (%) 

 

Ekin, keV 

 

 

Z=20 

 

Z=80 

 

Z=95 

10 

50 

100 

500 

-0,05 

-0,03 

+0,01 

+0,08 

-0,34 

-0.34 

-0,34 

-0,30 

-0,56 

-0,55 

-0,45 

-0,40 

 

Note. Here Δ1 = {[FHFSrel (E,Z) / FHFSnonrel (E,Z) ] - 1} . 100%, where FHFSrel (E,Z) 

– Fermi function in atomic field HFSrel [2,12]; FHFSnonrel (E,Z) – Fermi function 

in atomic field HFSnonrel [2,3,12,13,18].   

 

Table 5 - Effect on the Fermi function F(E,Z) for β-decay choice fields 

(HFSrel, HFSnonrel, ODF): values Δ2 (%) 

 

Ekin, keV 

 

 

Z=20 

 

Z=44 

 

Z=63 

 

Z=80 

 

Z=95 

10 

50 

100 

500 

-0,08 

-0,06 

+0,04 

+0,13 

-0,10 

-0,08 

-0,07 

-0,06 

-0,24 

-0,23 

-0,18 

-0,14 

-0,56 

-0.55 

-0,54 

-0,51 

-0,79 

-0,77 

-0,68 

-0,61 

 

Note. Here Δ2 = {[FODFrel (E,Z) /FHFSnonrel (E,Z)] -1} . 100%, where FHFSnonrel 

(E,Z) – Fermi function in atomic field HFSnonrel ; FODFrel (E,Z) – Fermi function 

in atomic field N-QED [2,12,13]. 

     Analysis of the data obtained shows that for small and medium values of the 

nucleus of the nucleus, in particular, Z = 20, the difference between the data ob-

tained on the basis of the relativistic HFS and ODF methods turns out to be in-

significant, amounting to hundredths of a percent. At large values of Z (up to Z 

= 95, calculations in the HFSrel field gave a 0.5% lower value for F(E,Z), and in 

the ODF field by 0,8%, in comparison with the nonrelativistic HFSnonrel values. 

The reason for this difference is obviously related to the well-known effect of 
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relativistic compression of orbitals. The wave function of the continuous spec-

trum (continuum) is more screened from the charge of the atomic nucleus by the 

relativistic field of atomic electrons than by the nonrelativistic one, and the more 

accurately relativistic effects are taken into account, the greater the effect.  

Results of computing the Fermi function of a −-decay with different definitions 

of this function.  Further, the difference in the values of the Fermi function 

F(E,Z) for the −-decay is numerically estimated when choosing different defini-

tions for the desired quantity. As indicated above, the Fermi function F(E,Z) was 

calculated by us both at the nuclear boundary and near zero. In the first case, the 

Fermi function F(E,Z) was calculated using the values of the radial electron 

wave functions f2
+1(R0) +g2

-1(R0) – at the boundary of the nucleus (uniformly 

charged spherical nucleus), in the second, the Fermi function was calculated us-

ing the squared amplitudes of the expansion (N2
κ=+1+N2

κ=-1) radial electron wave 

functions f2
+1(0) + g2

-1(0) at r→0 [2,12,13]. A convenient value characterizing 

the desired difference is the parameter: 

 

                Δ3 = {[F(E,Z,R = 0)) / F (E,Z,R = R0] - 1} . 100%,                       (58) 

 

where F(E,Z,R=R0) – Fermi function value calculated with values of radial elec-

tron wave functions at the nucleus boundary; F(E,Z,R=0) – the value of the 

Fermi function calculated using the amplitudes of the expansion of the radial 

wave functions near zero. 

     The results of calculating the differences in the values of the Fermi function 

F(E,Z) for β-decay when choosing two different definitions of this quantity are 

given in the Table 6. The results of our calculation within the framework of the 

ODF method are presented, as well as for comparison for a number of values of 

the kinetic energy the data of estimates within the framework of the relativistic 

HFS (e.g.[12,13]).      Analysis of the results shows that with an increase in the 

atomic number Z, the difference in the values of the Fermi function determined 

by different methods sharply increases. The change in the integral Fermi func-

tion f(E0 ,Z) turns out to be similar. In particular, the calculation showed that the 

function f increases for decays 33P→33S (Е0 = 249 keV), 35S→35Cl (Е0=167 keV) 

by 2-4%, 63Ni→63Cu (Е0=65,8 keV) – 5%, 155Eu→155Gd (Е0=140,7 keV) – 12%, 
241Pu→241Am (Е0=20,8 keV) – 32% (when passing from the definition of F(E,Z) 

by functions at  
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Table 6 - The difference in the Fermi function F(E,Z) for β-decay when choos-

ing different definitions for this quantity: Δ3={[F(E,Z,R=0)) / F(E,Z,R=R0 ]-

1}.100%, where F(E,Z,R=R0) calculated with the values of radial electron wave 

functions at the nucleus boundary, and F(E,Z,R=0) – using the amplitudes of the 

expansion of the radial wave functions near zero (R0 = 1,2 А1/3 fm); HFS – work 

data [12,13]; N-QED – calculation data within the framework of the N-QED 

theory (e.g.[2,3,5,12,13,18]) 

 

 

Еkin, 

keV 

Δ3, % 

Z=20 

HFS N-

QED 

Z=44 Z=63 Z=80 Z=95 

HFS N-

QED 

0,1 

1,0 

50 

500 

1,35   1,39 

1,37   1,42 

1,38   1,45 

1,50   1,58 

5,44 

5,53 

5,58 

5,84 

12,72 

12,84 

12,95 

13,10 

23,25 

23,36 

23,58 

24,61 

 33,9    

36,8 

 34,1    

37,2 

 34,2    

37,6 

 35,5    

39,88  

 

the boundary of the kernel to the definition of F(E,Z), calculated from the ampli-

tudes at zero). 

     Note that in the literature there have been various points of view on the cor-

rectness and acceptability of one or another approach to the definition of the 

Fermi function.  

In our opinion (see also [2,3,5,12]), the determination of the Fermi func-

tion using the amplitudes of the expansion of wave functions near zero is more 

justified and rational. As indicated in [2,12,13,18], an additional factor in favor 

of this statement is the fact that, based on the amplitudes of the expansion of the 

electronic wave functions at zero, one usually calculates, for example, the elec-

tronic factor of the EO conversion Ω(EO), corrections to the internal conversion 

coefficients to take into account anomalies etc. 

     Let us now consider the question of the region of formation of the integral 

Fermi function f(Е0,Z). A convenient parameter for this estimate is the quantity 

used in a number of works (see, for example, [2,12]): 
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        y = 
x

0

F(E,Z) Ep (E0 – E)2 dE / 
0

0

E

F(E,Z) Ep (E0- E)2 dE.           (59) 

 

     Table 7 shows our calculated data on the formation region of the integral 

Fermi function f(E0,Z) for a series of β-decays, in particular, decays: 
241Pu→241Am,  106Ru→106Rh, 63Ni→63Cu, 155Eu→155Gd, 35S→35Cl, 33P→33S, 
45Ca→45Sc. 

     Analysis of the data obtained (Table 7) shows that for energy values from 

x=0,7E0 and further to x=0,9E0, 100% of the integral for the function f(E0,Z). 

At an energy value x = 0,5Е0, about ~ 80% of the integral for the function 

f(E0,Z).  

As a result, it turns out that the corrections, which are significant for small 

values of the energy of the emitted β-particle, affect the integral Fermi function.  

Next, we will study the question of the quantitative characteristic of taking into 

account the exchange-correlation effects in the wave functions of the discrete 

and continuous parameters of the Fermi functions.  

 

Table 7 – Formation region of the integral Fermi function f(E0,Z)  for β-

decay (our data) 

 

Е0, 

keV 

 

β-decay 

y, % 

x/E0 

=0,3 

0,5 0,7 0,9 

20,8 

39,4 

65,8 

140,7 

167,4 

249 

257 

241Pu→241Am 
106Ru→106Rh 
63Ni→63Cu 
155Eu→155Gd 
35S→35Cl 
33P→33S 
45Ca→45Sc 

67 

66 

65 

63 

58 

53 

52 

89 

88 

87 

84 

81 

78 

77 

99 

98 

97 

96 

95 

93 

91 

100 

100 

100 

100 

100 

100 

100 

 

Further consider an effect of accounting the exchange-correlation effects in 

wave functions on the values of the integral Fermi function. The nuclear QED 

approach developed by us allows for a full account of exchange effects, as well 

as correlation effects.  

In this subsection, we quantitatively study the influence of taking into ac-

count the sought effects in the electronic wave functions on the values of the 
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Fermi function and the integral Fermi function. It should be noted that the issue 

of accounting for exchange was considered earlier in the literature (see, e.g., 

[2,3,5,12,13,18]).  

The study of the contribution of correlation effects is considered here for the 

first time. 

     Table 8 shows the results of calculating the contribution of the value of com-

plete accounting for exchange in the electronic wave functions of discrete and 

continuous spectra to the values of the integral Fermi function f(E0,Z); on the ba-

sis of various approaches [2,3,5,12,13,18], transitions are considered: 35S→35Cl, 
63Ni→63Cu, 33P→33S, 106Ru→106Rh, 155Eu→155Gd, 241Pu→241Am. As a conven-

ient parameter that determines the desired contribution, we took the quantity: 

 

                       Δ4 = {[ f (E0,Z)ODF / f(E0,Z] HFSrel) ]-1} . 100%,                 (60a) 

 

                        Δ5 = {[ f (E0,Z)DF / f(E0,Z] HFSrel) ]-1} . 100%,                   (60b) 

 

where f(E0,Z)ОDF – integral Fermi function calculated in the N-QED approxi-

mation with full allowance for exchange-correlation effects; f(E0,Z)DF – integral 

Fermi function calculated in the DF approximation with full allowance for ex-

change effects; f(E0,Z]HFSrel) – integral Fermi function calculated in the HFSrel 

approximation with incomplete account of exchange effects.  As the DF of the 

used results of our calculation, taking into account the exchange-correlation ef-

fects (Δ4), and also for comparison of the classical DF-calculation of the Band-

Listengarten-Trzhaskov (Δ5) taking into account exchange effects [12,13]).  

     As can be seen from the data obtained, with an increase in the completeness 

of accounting for exchange (and further exchange-correlation) effects in the 

wave functions of the discrete and continuous spectrum, the correction to the 

energy increases with a decrease in the boundary energy. The relative change in 

the integral Fermi function, for example, for the 241Pu→241Am transition is 

7,6%. 

Further consider an effect of accounting the exchange-correlation effects 

in wave functions on the values of the Fermi function. Let us note that  the ques-

tion of the influence of taking into account exchange-correlation effects in the 

wave functions of the discrete and continuous spectrum on the values of the 

Fermi function is of a great importance.   
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Table 8 – Contribution of the value of the complete account of exchange 

in the electronic wave functions of discrete and continuous spectra to the 

values of the integral Fermi function f(E0,Z) for some transitions 

 

Decay Е0, keV f (E0,Z) 

ODF 

f (E0,Z) 

DF 

f (E0,Z) 

HFSrel 

Δ4,  

% 

Δ

5, 

 

% 
35S→35Cl 

106Ru→106Rh 
155Eu→155Gd 
241Pu→241Am 

167,4 

39,4 

140,7 

20,8 

1,3461 10-2 

6,237510-4 

8,612410-2 

1,589610-3 

1,3556 10-2 

6,430410-4 

8,702510-2 

1,642410-3 

1,368210-2 

6,630410-4 

8,881710-2 

1,720810-3 

-1,6 

-5,9 

-3,0 

-7,6 

-0,9 

-3,0 

-2,0 

-4,6 

 

Note: Here Δ4={[f(E0,Z)ODF / f(E0,Z] HFSrel)]-1} .100%, where f(E0,Z]HFSrel) – 

integral Fermi function calculated in the HFSrel approximation with incomplete 

account of exchange effects; Δ5 = {[ f(E0,Z)DF / f(E0,Z] HFSrel)]-1} .100%, 

where f(E0,Z)DF – integral Fermi function calculated in the DF approximation 

with full account of exchange (exchange-correlation) effects. 

 

         Table 9, 10, 11 shows the data of our calculation of the values of the Fermi 

function F(E,Z) for decays: 106Ru→106Rh, 63Ni→63Cu, 241Pu→241Am. For com-

parison, the same table also shows some values of the function F(E,Z), calculat-

ed by the HFSrel method, by the DF method, as well as in the Coulomb field ap-

proximation, taking into account the finite dimensions of the nucleus (data taken 

from [2,3,5,12,13,18]).  

     As characteristic parameters determining the contribution of the sought ef-

fects, it is convenient to operate with the quantities:  

 

                   Δ6 = {[F(E,Z)QED / F(E,Z]HFSrel)]-1} . 100%,                      (61a) 

 

                     Δ7 = {[F(E,Z)DFexc / F(E,Z]HFSrel)]-1} . 100%,                      (61b) 

 

                       Δ8 = {[F(E,Z)HFSrel)/ F(E,Z)Coulomb)-1) . 100%,                       (61c) 

 

Table 9 -  The functions F(E,Z) and the influence on it of the complete 

accounting for exchange (correlation) in the wave functions of the DF of 

discrete and continuous spectra (transition: 106Ru→106Rh) 
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Еβ 
– kin,  

keV 

 

Z=45 

 

F(E,Z) 106Ru→106Rh; Е0 = 39,4keV 

 

 

- Δ6, 

%  

 

- Δ7, 

%  

 

- 

Δ8, 

%  

 QEDexc DFexc HFSrel Coulomb    

0,5140 

2,6582 

6,3456 

16,767 

28,233 

39,314 

84,0896 

38,7468 

25,6138 

16,0979 

12,6722 

10,8742 

86,3579 

39,6767 

26,1625 

16,3667 

12,7921 

10,9863 

93,6620 

41,2162 

26,8605 

16,6530 

12,9745 

11,1218 

95,3163 

42,0030 

27,3434 

16,9466 

13,2067 

11,3237 

10,2 

6,0 

4,6 

3,3 

2,3 

2,2 

7,8 

3,7 

2,6 

1,7 

1,4 

1,2 

1,7 

1,9 

1,8 

1,7 

1,8 

1,8 

 

 

Table 10 – The Fermi function F(E,Z) and the effect on it of a complete 

account of the exchange (correlation) in the wave functions of the DF of 

discrete and continuous spectra (transition: 63Ni→63Cu) 

 

 

Еβ 
– kin,  

keV 

 

F(E,Z) 63Ni→63Cu; Z=29; Е0 = 

65,8 keV 

 

 

Δ6, 

% 

 

Δ8, % 

 QEDexc HFSrel Coulomb 

 

 

0,85858 

4,4394 

10,547 

28,002 

47,159 

65,657 

29,3482 

13,4120 

8,8125 

5,6139 

4,5391 

4,0197 

31,5491 

13,9167 

9,0867 

5,7411 

4,6076 

4,0652 

31,8710 

14,0385 

9,1751 

5,8094 

4,6644 

4,1132 

-7,0 

-3,6 

-3,0 

-2,2 

-1,5 

-1,1 

-1,0 

-0,9 

-1,0 

-1,2 

-1,2 

-1,2 

 

 

where F(E0,Z)QEDexc – Fermi function calculated in the optimized approxima-

tion N-QED with full account of exchange-correlation effects; F(E0,Z)DFexc – 

Fermi function calculated in the DF approximation with full allowance for ex-

change effects; F(E0,Z]HFSrel) – Fermi function calculated in the HFSrel 
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approximation with incomplete account of exchange effects; F(E,Z)Coulomb – 

Fermi function (Coulomb approximation). 

         As can be seen from the data obtained (see Tables 9-11), the correction as-

sociated with taking into account the exchange-correlation effects in the elec-

tronic wave functions of the discrete and continuous spectra at low energies sig-

nificantly exceeds the correction for screening (with respect to the Coulomb 

field), which is found using the HFSrel method, however, with increasing energy, 

the screening correction is gradually compared with the exchange contribution. 

     It is easy to understand that the construction of the Curie plot according to 

our calculated data F(E,Z), as well as according to the data of the standard DF 

calculation (e.g. [2,3,5,12,13,18], in comparison with similar data based on the 

HFSrel method, in the region of low energy values will have excess over a 

straight line drawn through points with higher energy. 

 

Table 11 – Fermi function F(E,Z) and the influence on it of the complete 

account of exchange (correlation) in the wave functions of the DF of 

discrete and continuous spectra (transition: 241Pu→241Am) 

 

 

Еβ 
– 

kin, 

keV 

Z=95 F(E,Z) 241Pu→241Am; Е0 = 

20,8 keV 

 

 

Δ6, 

% 

 

Δ7, 

% 

 

Δ8, % 

QEDexc DFexc HFSrel Coulomb 

 

   

0,2713

7 

1,4033 

3,3341 

8,8517 

14,907 

20,755 

2014,27 

944,400 

621,735 

391,342 

303,169 

259,003 

2075,86 

961,517 

634,238 

394,909 

306,220 

260,587 

2316,49 

1018,29 

661,040 

406,591 

313,858 

266,528 

2431,60 

1069,57 

694,165 

426,528 

329,084 

279,230 

-

13,0 

-7,3 

-5,9 

-3,8 

-3,4 

-2,8 

-

10,4 

-5,6 

-4,1 

-2,9 

-2,4 

-2,2 

-4,7 

-4,8 

-4,0 

-4,7 

-4,6 

-4,5 

 

Then, such an excess can simulate a massive neutrino with a nonzero mass in 

the amount of 1,8% of the number of decays.  

1.5  Conclusions 
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We have briefly presented the modern concepts of physical nature of a 

beta-decay and considered the key fundamental parameters of a nuclear beta-

decay, classification of the beta-transitions, selection rules etc.  An effective  

relativistic approach to calculating the characteristics of the β-decay for different 

of atomic systems (nuclei) is presented and based on the combined relativistic 

nuclear model and relativistic many-body perturbation theory formalism with 

correct accounting for exchange-correlation, nuclear, radiation corrections. A 

relativeistic many-body perturbation theory is applied to electron subsystem, and 

a nuclear relativistic middle-field model is used for nuclear subsystem. The 

results of computing the characteristics of a whole series of allowed (super-

allowed) β-decays are presented, namely, for the 33P→33S, 35S→35Cl, 
45Ca→45Sc, 63Ni→63Cu, 106Ru→106Rh, 155Eu→155Gd, 241Pu→241Am decays. The 

effect of the chemical environment of an atom on the characteristics (integral 

Fermi function, half-life) of β-transitions is studied. We presented the results of 

accurate calculation of the beta-decay parameters and compared with alternative 

theoretical data. Results of computing the Fermi function of a −-decay with 

different definitions of this function are presented too. The effect of an atomic 

field type choice on the beta decay characteristics as well as the influence of 

accounting for the exchange-correlation effects in the wave functions of the 

discrete and continuous spectrum on the values of the Fermi and integral Fermi 

functions are calculated.   
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PART II  RELATIVISTIC QUANTUM CHEMISTRY AND 

SPECTROSCOPY OF SOME KAONIC ATOMS:   

 HYPERFINE AND STRONG INTERACTION EFFECTS   

 

Abstract.  We present a consistent relativistic approach to calculation of energy 

and spectral parameters of the kaonic exotic atomic systems with accounting for 

the nuclear radiative (quantum electrodynamics), hyperfine and strong interac-

tions. The approach is naturally based on using the relativistic Klein-Gordon-

Fock equation with introduction of electromagnetic and strong interactions po-

tentials. To take a strong kaon-nuclear interaction into account, the generalized 

optical potential method is applied.  In order to take the nuclear (the finite nu-

clear size effect) and radiative (quantum electrodynamics) corrections into ac-

count, the generalized Uehling-Serber approach is applied.  The elements of the 

hyperfine structure theory of the kaonic atoms (KA) are presented. As an illus-

tration, there are results of calculating the binding energies of various atomic 

levels in a hydrogen KA obtained within the H-like model of Iwasaki, the meth-

od of Indelicato et al and our approach (here the Fermi model of the charge dis-

tribution in the nucleus is used). Using our calculated "electromagnetic" values 

of the transition energy and a set of available latest experimental values, it is 

calculated a shift of the 1s level in kaonic hydrogen, due to the strong kaon-

nucleon interaction; the calculated "electromagnetic" value of the transition en-

ergy and further comparison with the experimental value of the transition al-

lowed to obtain a theoretical estimate of the "strong" shift in kaonic hydrogen, 

which is in excellent agreement with the DEAR experimental data.  In addition, 

the results of calculating the energy (electromagnetic) contributions (the main 

Coulomb correction, correction for vacuum polarization, relativistic correction 

for the recoil effect, a hyperfine shift) to the energy of the 8k-7i, 8i-7h transi-

tions in the spectrum of kaonic nitrogen are presented and compared with the 

alternative theoretical data by Indelicato et al. . 

 

Keywords: Quantum mechanics and spectroscopy - Kaonic atoms - Relativistic 

many-body perturbation theory - Klein-Gordon-Fock equation -Strong kaon-

nuclear optical potential - Hyperfine Structure 
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 2.1   Introduction 

  At present, an exotic atom is usually understood as a bound or quasi-

stationary complex, which is obtained as a result of the landing of a heavy nega-

tively charged particle (hadron, lepton) X ( ), , , , ,...X K p − − − − −=   on an ordinary at-

om [1-50]. Hence the name of various types of exotic atoms, in particular, pi-

onic, hyperonic, and KA of interest to us. Antihydrogen ( )p e− − , muonium 

( )e − − , and other systems are sometimes referred to such systems. The progress 

observed in the last decade in the theoretical and experimental study of hadronic 

atoms has been noted in a number of rather interesting reviews both on the phys-

ics of KA and on the physics of other hadronic atoms (see, for example, [51-

60]).  

  Despite the more than 70-year period of the development of the physics of 

hadronic atoms, until the early 2000s, the situation with the data on the energy 

parameters of most kaonic, pionic, and other atoms was rather confusing [1-50]. 

Moreover, in recent years, the situation in the physics of kaonic atoms (KA) 

continues to change rapidly, the most striking example of which is the recent so-

lution to the problems of kaonic hydrogen and helium (see [1-4] and the text be-

low), due, among other things, to huge experimental errors. The study of kaonic 

atoms has become especially relevant in the light of the well-known progress of 

experimental studies (at meson factories in the laboratories of LAMPF (USA), 

PSI (Switzerland), TRIUMF (Canada), IFF (Russia), RIKEN ( KEK, Japan), 

RAL (United Kingdom), DEAR at the DAPNE (Italy) and further substantial 

development of modern nuclear theory, quantum mechanics of atoms etc. At 

present, it is customary to consider (see, e.g., [1-10] ) that the main tasks of 

modern physics of the nucleus, elementary particles and high energies are to 

check the consequences and search for violations of the Standard Model of elec-

troweak interactions with the aim of generalizing it, determining the neutrino 

masses, elucidating cosmological consequences from the physics of the mi-

croworld, etc.  

 Experimental studies here, as a rule, are developing in two complementary 

directions, in particular, the basis of the first is the construction of high-energy 

accelerators and unique detectors in order to detect new particles and interac-

tions and verification of theoretical models [1-56]. The second direction is pre-

cisely the physics of hadronic atoms or, as is often indicated, the physics of in-

termediate energies, including the determination of the energy and spectral pa-

rameters of systems, as well as the search for rare decays and reactions with al-
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ready known particles, the detection of violations of the fundamental properties 

of symmetry, the study of atomic and molecular processes with the participation 

of hadronic, including kaonic atoms. 

It should be noted that the most correct approach to description of the kaonic 

atomic systems should be based on the principles of a modern consistent quan-

tum chromodynamics with some elements of a quantum electrodynamics in a 

case of multielectron kaonic atoms. One could remind that consistent quantum 

chromodynamics represents a fundamental gauge theory of strong interactions 

with the interacting coloured quarks and gluons. Due to the strong interaction 

effect, there is a shift of energies of the low-lying levels from the purely elec-

tromagnetic values and the finite lifetime of the state corresponds to an increase 

in the observed level width. A few serious measurements are performed for dif-

ferent light and heavy kaonic atoms (e.g. [1-5]).     

The most spread theoretical methods to study energy and spectral characteris-

tics of kaonic atomic systems are described in Refs. [1-56]. In Refs. [43-56] ab 

initio schemes to the Klein-Gordon-Fock equation solution and further determi-

nation of the X–ray spectra for multi-electron kaonic atoms are presented with 

the different procedure for accounting for the nuclear, quantum electrodynamics, 

interelectron and kaon-electron interaction, exchange-correlation effects.  

Another extremely fundamental aspect of the theory of hadronic atoms, in 

particular, KA, is associated with taking into account the radiation, QED correc-

tions to the energy of the atom (transition energies, etc.) [57-74]. First of all, we 

are talking about taking into account the effect of vacuum polarization, as well 

as the less significant contribution for KA, due to the self-energy part of the 

Lamb shift. In [1,4, -, 5 42,43,57-78], a review of the current state of calculating 

radiative corrections to the energies of levels in kaonic atoms is given, and exist-

ing problems are analyzed, in particular, the difficulties of calculating the re-

quired radiative corrections in the case of heavy systems.  

For a point nucleus in the first order of PT in Z  (Z is the nuclear charge;  is 

the fine structure constant), the vacuum polarization addition to the nucleus po-

tential is the known Uehling-Serber potential ( )rU
~ . Taking into account the fi-

niteness of the size of the nucleus modifies this potential. In the well-known 

works of Wichmann-Kroll (see [1,42,43,57-74]), a method was developed that 

makes it possible to calculate the vacuum polarization in all orders by   ( )nZ . In 

principle, the polarization shift could be calculated as a first-order correction to 

the potential ( )rU
~ . Convenient techniques with application to the description of 

the spectra of ordinary heavy atoms and multiply charged ions have been pro-
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posed and implemented in the papers by Declaux -Indelicato, Mohr, Saperstein, 

Johnson et al (see, for example, [1-4,50-98]). However, it should be noted that 

the main techniques based on the expansion of the contribution of radiative cor-

rections by  Z , naturally, work only for systems with low Z, i.e., light atoms. In 

the case of heavy systems, in particular, KA, these approaches will obviously 

not give correct results. 

     In Ref. [2, 81,82,91,92] we have presented  an effective relativistic approach 

to calculation of spectra and the spectroscopic properties of the heavy kaonic 

(pionic) multielectron atomic systems. The approach is based on the Klein-

Gordon-Fock equation solution with simultaneous accounting for electromag-

netic and strong kaon-nuclear interactions.  

     The modified method of optical potential is used to take a strong kaon-

nuclear interaction into consideration. The consistent procedures, in particular,  

such as an advanced Uehling-Serber model and model potential approach  are 

applied to take the main nuclear and quantum electrodynamics corrections into 

account. The results of calculation of the energy and spectral parameters for the 

kaonic atoms of He, 184W, 207Pb, 238U, with taking the radiation (vacuum polari-

zation), nuclear (finite size of a nucleus) and the strong kaon-nuclear interaction 

corrections into account have been presented.   In this chapter we present the 

generalization of theory in order to determine the hyperfine and strong interac-

tion effects as well as to calculate the probabilities of the radiative transitions in 

spectra of the hydrogen (including the kaonic hydrogen puzzle) and nitrogen ka-

onic atoms.   

 2.2 Relativistic theory of kaonic atoms with accounting for the nuclear, 

hyperfine and strong interaction effects 

 2.2.1 The Klein-Gordon-Fock equation and electromagnetic interactions 

in kaonic system 

New version of a relativistic theory of kaonic atomic systems with accounting 

for the nuclear, radiation, hyperfine and strong interaction effects has been in de-

tail presented in Refs. [2, 81,82,91,92]. So, here it is worth to consider only 

some new model elements. However, at once, we present shortly the summary 

of modern kaon data [1-10].  
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 There are 4 types of kaons: negatively charged К− (composition: s-quark + 

u-antiquark), mK
-=493.667±0.013  MeV; lifetime ((1.2384±0.0024)10−8 sec and 

radius: rK-=0.5600,031fm. Its antiparticle is a positively charged kaon K+ 

(composition: u-quark + s-antiquark). Naturally, due to the CPT symmetry, 

mK
+=mK

-, t=tK
- should take place (modern data: m=0.032±0.090 MeV; 

t=(0.11±0.09)10−8sec). Neutral kaons 00 K
~

,K have the following composition: 

d-quark + s-antiquark and s-quark + d-antiquark, mK
о=497.648±0.022 MeV. 

Since K0 and the antiparticle 0K
~

appear as a result of strong interaction, they de-

cay due to weak interaction and represent a composition of 2 weak eigenstates: 

short-lived neutral К=KS ("K-short"; decays into 2 pions and tK
о= 8.958×10−11  

sec ) and long-lived neutral К=KL ("K-long"; decays into 3 pions and tK
о= 

5.18×10−8 sec). 

     The kaonic  wave functions are  determined from solution of the known rela-

tivistic Klein-Gordon-Fock equation:   

 

                            0)(})]([
1

{ 22222

02
=−++ xcmreVE

c
                    (1) 

 

Here c is a velocity of light, E is the total energy of atomic system,  V0 is a sum 

of electric potential of a nucleus and strong interaction potential and the Ueh-

ling-Serber potential.  To determine the electric potential of the nucleus, we used 

the Fermi model with charge distribution ( )r  [1]:  

 

                           )]}/)exp[(1/{)( 0 acrρrρ −+=            (2) 

 

where parameter a=0.523 fm, and parameter с is chosen so that the root-

mean-square radius is determined by the expression: 

<r2>1/2=(0.836A1/3+0.5700) fm. As an alternative, as usual in atomic calcula-

tions, the empirically determined Z-dependence for the effective radius is 

used [1].  

Other versions of the nuclear electric potential are presented by the Gauss 

and a homogeneously charged sphere models [92, 93].  The standard point of 

our theoretical approach is connected with determination of the electric and 

radiative potentials within the effective algorithm based on the differential 

equations method.  This is the method originally developed by Ivanova and 

Ivanov [86] and further has been often used in solving many problems of 

atomic, molecular, nuclear and laser spectroscopy (e.g. [1,38,39,86,87,99-
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140]). It is important to underline too that in order to determine an electrical 

interaction between a nucleus of finite size (radius of R1) and kaon (radius 

R2), one should use, for example, the potential, introduced  by Indelicato et al 

[42,43,50] (e.g. Refs. [2, 81,82,91,92] too).  

The next principally important block of our approach includes an accurate 

treatment of the radiative (quantum electrodynamics) effects (e.g., [37-41,57-68, 

86-90]). We have used an effective the generalized Uehling-Serber approach to 

accounting the radiative corrections, in particular, vacuum-polarization one. The 

standard Uehling-Serber potential can be written as follows:   

 

    ( ) ( )( ) ( )


−
−

+−−=
1

2

2
2

3

21
2112exp

3

2
gC

rt

t
tZrtdt

r
rU









, 

 

                                   Zrg /=                                                      (3) 

 

where -constant of fine structure, which in fact (even taking into account the 

finite size of the nucleus) takes into account the main contributions of the order 

[ ( ) nZ ] , but does not take into account the known contributions of Källen-

Sabry, Wichmann-Kroll and others.  

     A more correct form of the Uehling-Serber potential is  

 

U(r)=-(2/3r)C(g), 

 

where С is the so-called Uehling-Serber integral, but as C(g) the generalized 

function e.g. [1, 37-40, 86-90]) is used and then performed the transition from 

the potential U for the point core to the potential for the finite core.  

     To take into account the effect of electron shielding (in the case of the nitro-

gen atom), the usual potential of a self-consistent electron field is used.   

The whole procedure of accounting for the QED corrections is in detail de-

scribed in Refs. [1,85-87,91-93] as well as the fine corrections, provided by rela-

tivistic recoil, reduced mass and other effects.   

     Further in order to calculate the radiation transition probabilities or a radia-

tion width in spectra of the kaonic atom we apply our traditional relativistic en-

ergy formalism in the version [37-39,66,67,85-87].  

     A total energy level shift E  can be presented in the following form:   
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               ( ) r

iiiii iEEiEE −=+= 2/ReImRe  ,                     (4) 

 

where r

i  is a level radiation width. It should be noted that an oscillator strength 

(or transition probability) is directly connected with r

i  (Pi~ r

i ) and further is de-

termined by combination of amplitudes < |sin( | | ) |ij ijij i r / r ji   (ij is a frequency of 

the i-j transition).  The detailed procedure for computing the radiative transition 

matrix elements as well as the hyperfine structure characteristics is presented in 

Refs. [1,48-50,66,67,72-77,88,90]. All computing is carried out with using the 

PC code Superatom (version 98). 

2.2.2  Model approach to study of the strong and hyperfine interactions 

in kaonic atoms 

As it is indicated, the most correct approach to description of the kaonic 

atomic systems should be based on the principles of a modern consistent quan-

tum chromodynamics with some elements of a quantum electrodynamics in a 

case of multielectron kaonic atoms. Indeed a quantum chromodynamics repre-

sents a fundamental gauge theory of strong interactions with the interacting col-

oured quarks and gluons.   

     From the other side, since we are interested by relatively low energy physics 

of the kaonic atomic systems, one should use different model potential methods 

to determine the strong kaon-nuclear interaction in these systems (e.g. [1-56]). 

In this case the total Klein-Gordon-Fock equation taking into account the strong 

kaon-nuclear interaction 
NV can be written as follows: 

 

              ( )
22 2 2 2 2 2FS Nc E V c V   −  + − − =

  .                      (5) 

 

where the standard  phenomenological optical potential with the proton 
p and 

neutron 
n  densities is written taken as follows [45]:  

 

                       )]()(][1[
2

rArA
M

M
V nKnpKp

N

K

N 



++−= ,                   (6) 

  

All the parameters of the potential (6) are described in Refs. [45,51-53]).  
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As it is noted in Ref. [1], the key disadvantage of the used potential (5) approach 

is connected with inaccurate determination of its parameters, including the pro-

ton and neutron densities, the effective K-nucleon scattering lengths (e.g., Refs. 

[1,45,51-53]).  

     It should be noted that if the experimental value of energy  
expE  is known, 

then one could easily calculate a strong kaon-nucleus interaction shift of the en-

ergy levels:  

 

                         )(exp EEEEEE QEDFSKGFN +++−= ,                           (7) 

 

In Eq. (7) in the brackets different purely electromagnetic contributions (respec-

tively, an energy of kaon in a case of point nucleus, the nuclear finite size and 

QED effects terms).  

.  The nuclear potential for the spherically symmetric density ( )Rr  can be pre-

sented as follows:  

 

                               ( ) (( ) ( ) ( )


+−=
r

r

nucl RrrdrRrrdrrRrV '''

0

'2''1                    (8) 

 

Further the density can be approximated by the Gaussian function:  

 

                                  ( ) ( ) ( )223 exp4 rRr −=                                (9) 

 

( ) ,1
0

2 =


Rrdrr   

( ) ,
0

3 RRrdrr =


  

 

(here =4/R2 and R is the effective nucleus radius) or by the Fermi function:  

 

                    )]}/)exp[(1/{)( 0 acrρrρ −+= ,                               (10) 

 

where the parameter a=0.523 fm, the parameter с is chosen by such a way that it 

is true the following condition for average-squared radius:  
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                                  <r2>1/2=(0.836A1/3+0.5700)fm.                                  (11) 

 

Further one should use  the formulas for the finite size nuclear potential and its 

derivatives on the nuclear radius. Here we use the known Ivanov-Ivanova et al 

method of differential equations (look details in Refs. [80-83]). The effective al-

gorithm for definition of the potential ( )RrVnucl
 is used in Refs. [65,72] and re-

duced to solution of the following system of the differential equations (for the 

Fermi model):  

 

             ( ) ( ) ( ) ( ) ( )RryrRrrdrrRrnuclV
r

,1,1, 2

0

'2''2'  = , 

                                      ( ) ( )RrrRry ,,' 2= ,                                            (12) 

                                                                      
2

0 )]}/)exp[(1]{/)exp[()/()(' acracraρrρ −+−=  

 

with the corresponding boundary conditions.  In a case of the Gaussian model 

the     corresponding system of differential equations is as follows: 

 

                         ( ) ( ) ( ) ( ) ( )RryrRrrdrrRrnuclV
r

,1,1, 2

0

'2''2'  =              (13) 

                                                   ( ) ( )RrrRry ,,' 2=                                       (14) 

 

            ( ) ( ) ( ) ( )Rr
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RrrrrRr ,
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,2exp8,'

2

225 


−=−=−−=    (15) 

with the boundary conditions: 

( ) ( )rRVnucl −= 4,0 ,  

 

( ) 0,0 =Ry , 

                                      ( ) 323 324,0 RR ==                              (16) 
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Another, probably, more consistent approach is in using the relativistic mean-

field (RMF) model, which been designed as a renormalizable meson-field theory 

for nuclear matter and finite nuclei [47]. 

  The detailed procedure for computing the strong interaction corrections is 

presented in Refs. [1,48-50,66,67,72-77,88,90]. All computing is carried out 

with using the PC code Superatom (version 98).    

 2.3 Quantum electrodynamics effects in pionic atomic systems 

Consistent and accurate account of the radiation or QED effects is of a 

great importance and interest in spectroscopy of the pionic atomic systems. To 

take into account the radiation (QED) corrections, namely, the important effect 

of the vacuum polarization one could use the procedure, which is in details de-

scribed in the Refs. [41-58, 65,72-78].  

Figure 1 [13] illustrates Feynman diagrams, which describe a QED effect 

of the vacuum polarization: А1 – the Uehling-Serber term; А2, А3 – terms of 

order  [ ( ) nZ ]  (n=2,..); A4- the Källen-Sabry correction of order ( )2 Z  ; A5 –the 

Wichmann-Kroll correction of order ка  ( )nZ  (n=3). An effect of the vacuum 

polarization is usually taken into account in the first PT theory order by means 

of the generalized  Uehling-Serber potential with modification to take into ac-

count the high-order radiative corrections. In particular, the generalized Ueh-

ling-Serber potential can be written as follows: 

 

           ( ) ( )( ) ( )



−

−
+−




−=



1
2

2
2 ,

3

21
2112exp

3

2
gC

rt

t
tZrtdt

r
rU         (17) 

 

where 

g=r/(Z). 

 

 More correct and consistent approach is presented in Refs.  [42,43,52-

62,134-160].  

 An accounting of the nuclear finite size effect modifies the potential (7) as 

follows:                       
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The Uehling-Serber potential, determined as a quadrature (11), may be approx-

imated with high precision by a simple analytical function. The use of new ap-

proximation of the Uehling potential permits one to decrease the calculation er-

rors for this term down to 0.5 – 1%.  

A method for calculation of the self-energy part of the Lamb shift is based on an 

idea by Ivanov-Ivanova (see Ref. [80,81]), which generalizes the known hydro-

gen-like method by Mohr and radiation model potential method by Flambaum-

Ginges (look details in Refs. [41,52,61,62]).  

According to Ref. [9], in an atomic system the radiative shift and the relativistic 

part of energy are, in principle, defined by one and the same physical field. One 

could suppose that there exists some universal function that connects the self -

energy correction and the relativistic energy.  The self-energy correction for the 

states of a hydrogen-like ion was presented by Mohr [41] as: 

 

                                  ( ) ( )nljZHF
n

Z
nljZHESE ,027148.0,

3

4

=                      (19) 

The values of  F are given at  .2,2,2,1,11010 2321 ppssnljZ =−=   

These results are modified here for the states 1s2 nlj of the non-H atoms (ions). It 

is supposed that for any ion with nlj electron over the core of closed shells the 

sought value may be presented in the form [52]: 

 

                                     ( ) ( ) ( )1
3

4

,027148.0, −


= cmnljf
n

nljZESE                    (20) 

 

The parameter ( ) RR EE ,41=  is the relativistic part of the bounding energy of the 

outer electron; the universal function ( )nljf ,  does not depend on the composition 

of the closed shells and the actual potential of the nucleus.  

The procedure of generalization for a case of the non-H systems with the 

finite nucleus consists of the following steps [9,]:  

1). Calculation of the values RE  and   for the states nlj of H-like ions with the 

point nucleus (in accordance with the Zommerfeld formula);   

2). Construction of an approximating function ( )nljf ,  by the found reference Z 

and the appropriate ( )nljZHF , ; 3). Calculation of RE  and   for the states nlj of 

Li-like ions with the finite nucleus; 4). Calculation of SEE  for the sought states 
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by the formula (14).  The energies of the states of the non-H atoms and ions are  

calculated twice: with a conventional constant of the fine structure 1371=  and 

with .1000~ =  

The results of latter calculations were considered as non-relativistic. This 

permitted isolation of RE  and  .  

A detailed evaluation of their accuracy may be made only after a complete 

calculation of ( )nljZE n

SE , .  

It may be stated that the above extrapolation method is more justified than 

using the widely spread expansions by the parameter Z . The other details of the 

theory and computational code can be found in Refs.[61-70, 76-79]. 

 

 

2.4   Elements of Relativistic energy approach 

 

Let us remind that an initial general energy formalism combined with an em-

pirical model potential method in a theory of atoms and multicharged ions has 

been developed by Ivanov-Ivanova et al [80-84]; further more general ab initio 

gauge-invariant version of relativistic energy approach has been presented by 

Glushkov-Ivanov [89].  The imaginary part of the energy shift of an atom is  

connected with the radiation decay possibility (transition  probability).  For the 

-n radiation transition ImE in the lowest order of the PT is determined as:  
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where n is a frequency of the -n radiation, (>n>f)  for particle  and (<n<f)  

for vacancy. The matrix element V is determined as follows: 
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        (21b) 

 

The detailed procedure for computing the matrix elements (22) is  presented in 

Refs. [76-88]. All calculations are performed with using the numeral code Su-

peratom (version 98). 

The imaginary part CulQ  contains the radial R and angular  S  integrals as 

follows: 
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( ) ( ) ( ) ( ) ( )
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  (21c) 

 

In the non-relativistic limit there remains only the first term in (44) depending 

only on the large component ( )f r  of the one-electron Dirac functions:  
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The angular coefficient has only a real part: 
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 1 3l l  means that 
1,l and 

3l  must satisfy the triangle rule and the sum 
1 3l l + +  

must be an even number.  

The rest terms in (44) include the small components of the Dirac functions. 

The tilde designates that the large radial component f  must be replaced by the 

small one g , and instead of , 1i i il l l= −  should be taken for 
i ij l  and 1i il l= +  for 

i ij l .  

Only the phase factor of the formulae (43)-(45) depends on the orbital mo-

menta 
il .  

Such a simple form of  the angular part of the matrix elements has been de-

rived by Kanjauskas and Rudzikas (1975; see Refs. [3,4,90-94]) when calculat-

ing Re E .  

 The problem of the searching for the optimal one-electron representation is 

one of the oldest in the theory of multielectron atoms.  Two  decades  ago  Da-

vidson  had  pointed   the   principal disadvantages of the traditional representa-
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tion based on the self-consistent field  approach  and  suggested  the  optimal  

"natural orbitals"  representation.   Nevertheless   there   remain insurmountable 

calculational difficulties in  the  realization  of the Davidson program.   

One  of the  simplified  recipes  represents, for  example,   the DFT method  

[29-33].  Unfortunately,  this  method   doesn't provide  a  regular  refinement  

procedure  in  the  case  of  the complicated atom with few quasiparticles (elec-

trons  or  vacancies  besides the core  of  closed  shells).  

     In the theory of radiative  and  nonradiative  decay  of  the quasistationary 

states of a multielectron atom it is well known an energy approach (see below) , 

based on the adiabatic Gell-Mann and Low formula [89,117,128] for the  energy 

shift E with electrodynamic scattering  matrice. The method is a consistently 

electrodynamic one,  allowing  for  the  uniform consideration of a variety  of  

induced  and spontaneous  processes different by their physical nature [129-

156]. 

For simplicity, let us consider now the one-quasiparticle   system. The multi-

quaiparticle case doesn’t contain principally new moments. In the lowest, sec-

ond order, of the QED PT for the E there is the only one- quasiparticle Feyn-

man  diagram A (fig.1), contributing the Im E (the radiation decay width).  

 

 
 

Figure 1 – a: second other EDPT diagram contributing the imaginary energy 

part related to the radiation transitions. b and c: fourth order  polarization                

diagrams 

 

Our density functional method, based  on  the formally exact QED PT, 

uses for this purpose  the model  bare  potential,  constructed  with  accounting   

for   the spectroscopic information concerning simplest systems with one qua-

siparticle [90]. 

In  the  next, the fourth order there appear diagrams,  whose  contribution  

into the  ImE  account  for  the  core  polarization   effects. This contribution 

describes collective effects and it is dependent upon the  electromagnetic  poten-
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tials  gauge  (the  gauge  noninvariant contribution). Let us examine  the  mul-

tielectron  atom  with  one quasiparticle in the  first  excited  state,  connected  

with  the ground state  by  the  radiation  transition.  In  the  zero  QED PT ap-

proximation  we, as usually (see  ref.[128]),  use  the  one electron bare poten-

tial: 

 

                                   VN(r)+VC(r),                                                 (22a) 

 

with VN(r) describing the electric potential of the nucleus, VC(r), imitating the 

interaction of the  quasiparticle  (initial  or  any other appearing in the real and 

virtual processes)  with the  core of  closed  shells.  The  perturbation  in  terms  

of  the  second quantization representation reads 
 

                              -VC(r) +(r) (r)  -  j(x) A(x)                      (22b) 

 

The core potential VC(r) is  related  to  the  core  electron density C(r) in a 

standard way. The latter fully defines  the one electron representation. Moreo-

ver, all  the  results  of  the approximate calculations are the functionals of the 

density C(r). Here, the lowest order multielectron effects, in  particular,  the 

gauge dependent radiative contribution for the  certain  class  of the photon 

propagator  calibration  is  treating.   

This  value  is considered to  be  the  typical  representative  of  the  electron 

correlation effects, whose minimization is a  reasonable  criteria in the searching 

for the optimal one-electron  basis  of  the  PT. Besides, this procedure derives 

an undoubted profit in the routine spectroscopic  calculations  as  it  provides  

the  way   of   the refinement of the atomic characteristics  calculations,  based  

on the "first principles" .   

Remember that the closeness of the radiation probabilities calculated with the 

alternative  forms  of the transition operator is commonly used as  a  criterion  of  

the multielectron calculations quality. It is of special  interest  to verify the com-

patibility of the new  optimization  principle  with the  other  requirements  con-

ditioning  a    "good"   one-electron representation.  

The imaginary part of the diagram a (fig.1)  contribution  in the case of the Lo-

rentz calibration has been presented  previously as a sum of the partial contribu-

tions of -s transitions from the initial state  to the final state s [3,128], 
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                                  ImE (a) =
S

  Im E (-s; a).                        (22c) 

 

Two  fourth  order  polarization  diagrams  b,c  (fig.1)  are considered  in  this  

article.  The  contributions   being   under consideration, are gauge- dependent, 

though  the  results  of  the exact  calculation  of  any  physical  quantity  must  

be    gauge  independent . All the noninvariant  terms  are  multielectron  by their 

nature.  Let us take the photon propagator calibration as follows: 

 

D = DT + CDL , 

 

DT =    / ( k 0

2  - k 2 ), 

 

DL = - kk / ( k 0

2 - k2 ).                                   (23) 

 

Here, DT   represents  the  exchange  of  electrons  by  transverse photons, DL 

that by longitudinal ones. The values C=0 and C=1 of  the gauge constant are 

related  to  the  Lorentz  and  to  the  Landau calibrations correspondingly. One 

could calculate the contribution of the a,b,c diagrams (fig.1.1) into the Im E 

taking into account  both the  DT  and DL parts.  

The A diagram contribution into the Im E related to the   -s transition 

reads as  
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for   D = DT, and 

 

- e 2

8
 dr1 dr2  

+ (r1) s
+ (r2) {[(1- 1 n12 2 n12 )/ r12 ] sin (s r12 )+ 

                   +s  (1 + 1 n122n12)cos(sr12)}(r2)s(r1),              (25) 

 

for D=DL , where s is the  -s transition energy.  

According to the Grant theorem [1], the D,L   contribution vanishes, if  the  

one-quasiparticle  functions    , s satisfy the same Dirac equation. Neverthe-

less this term is to be retained when using the distorted  waves  approximation, 

for example.  
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Another very important example  represents  the  formally exact approach 

based  on  the  bare  hamiltonian  defined  by  its spectrum without specifying its 

analytic form  [129,130].  Here  the noninvariant contribution appears already in 

the lowest order. When calculating the forth order contributions some approxi-

mations are inevitable. These approximations  have  been  formulated  in  

Refs.[90, 94,96], where the polarization corrections to the state energies have 

been considered. Here, we reproduce briefly the calculational scheme.  

Let us consider the direct polarization diagram as an  example.  After the lin-

earization over the gauge constant C, the formal expression for the sought for 

value looks as   
2
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and the upper continuum electron states;  m  f     indicates the finite number of 

states in the  core  and  the states of the negative  continuum  (accounting  for  

the  electron vacuum  polarization).  

All  the  vacuum   polarization    and   the self-energy corrections to the  

sought  for  values  are  omitted. Their  numerical  smallness  compared with the 

other  relativistic corrections to  the  different  atomic  characteristics  had  been 

verified  by  the  numerous  calculations.   The   renormalization procedure is not 

needed here. Nevertheless the second-order  vacuum polarization and self-

energy corrections can be additively   added to the complex state  energy. The  

remaining  expression  includes summation over the bound  and  upper  continu-

um  atomic  states.  

To evaluate this  sum,  we use the analytic relation  between  the atomic elec-

tron Fermi level  and  the  core  electron  density  c (r), appropriate  to the ho-

mogeneous   nonrelativistic  electron gas (the Tomas- Fermi approximation). 

Now the sum n>f, m<f can  be calculated analytically , its value becomes a  func-

tional  of  the core electron density.  The  resulting  expression  looks  as  the 
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correction due to  the  additional  nonlocal  interaction  of  the active quasiparti-

cle with  the  closed  shells.   

Nevertheless  its calculation is reducible to the  solving  of  the  system  of  

the ordinary differential equations - the one- dimensional  procedure. The most 

important refinements can be introduced by accounting for the relativistic and 

the  density   gradient  corrections  to  the Tomas-  Fermi  formula  (see  Refs. 

[3,4]).  The  same  program  is realized   for  the   remaining   forth   order   QED 

PT polarization corrections.  

The minimization of the functional Im Eninv (b+c) leads to the integro- dif-

ferential equation for the  c (the Dirac-Fock or Dirac-Kohn-Sham-like equa-

tions for the electron density) that  can be solved using one of the standard nu-

merical codes.  

As a result one can get the optimal PT one-quasi-particle  basis.  

In concrete calculations it is sufficient to use a more simplified procedure, 

which is reduced to the functional minimization using the variation of the corre-

lation potential parameter b in Eq. (13) or (17) [3,4,117,128].   

 2.5 Some Results and Conclusions 

 

Below we present some results of calculation of the energy and spectroscopic 

characteristics for kaonic atoms of the hydrogen  and nitrogen. The kaonic hy-

drogen atom is of a considerable interest as a meson atom that has no electron 

subsystem.  

The results of experimental study of the hydrogen KA has been presented, for 

example, in Refs. [3,4]. In particular, the  X-ray 2-1 transition  in the kaon H 

spectrum is studied obtained in experiment by SIDDHARTA Collaboration (see 

details in Refs. [3,4]). 

     In Table 1 there are presented the  results of calculating the binding energy of 

different atomic levels in a hydrogen KA (in keV) obtained in the H-like model 

of Iwasaki, the method by Indelicato et al and our approach. The Fermi model of 

a charge distribution in a nucleus is used in our computing [53-56].  In principle, 

all approaches naturally give fairly close results. Note that the contribution of 

radiation corrections here is extremely small, in contrast to KA with a large val-

ue of the nuclear charge. 
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Table 1 – Calculated binding energies of different atomic levels                                

in hydrogen KA (in keV) 

 

Level Indelicato et al Iwasaki Our data 

1s 8.63360 8.634 8.63380 

2p 2.15400 2.154 2.15390 

3p 0.95720 0.957 0.95710 

 

     In Table 2 there are presented the experimental and theoretical values of the 

energy (keV) of the 2-1 transition to the hydrogen KA [1-4,7,43,44,53-56]. Ex-

perimental data ware listed in Refs. [3,4]. Theoretical results are  obtained on the 

basis of calculations within the method by Indelicato et al [42,43] and our rela-

tivistic approach. 

 

Table 2 – The experimental Eexp and theoretical Ec values of energy 

(keV) of  the 2-1 transition in the hydrogen KA spectrum (see text) 

 

Ec, 

This work 

Ec 

[44,50] 

Eexp 

[1-4] 

6.481 6.480 

6.482 

6,440,4 

6.6750,15 

6,960,33 

 

 

    As in the case of the energies of atomic levels, there is a fairly good agree-

ment between the theoretical results (in fact, the electromagnetic contributions 

to the transition energy!), which is explained by the insignificant role of radia-

tive corrections (in the absence of electrons). We have performed the calculation 

of the transition energy using charge distribution models in the form of a uni-

formly charged ball, the Gauss distribution and the Fermi model. The difference 

in the corresponding values of energies averaged a few eV (compared to keV), 

thus, in this case, the choice of the charge distribution model is not critical. On 

the other hand, for radiative transitions between low-lying energy levels (n ~ 1), 

as in our case, the contribution due to the strong interaction is very significant. 

The strong kaon-nucleon interaction induces a shift and broadening of the 1s 

level in the spectrum of kaonic hydrogen. The corresponding shift in the pres-
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ence of an experimental value of the transition energy, say, Eexp(2p-1s) and a 

"precisely" defined "electromagnetic" correction EEM is defined as: 

 

E(1s)= Eexp(2p-1s)- EEM(2p-1s). 

 

According to the experimental data by M. Iwasaki et al (KEK, 1997), as well as 

T.  Ito, R. Hayano, S. Nakamura et al (2007), the measured shift is as follows: 

 

E1s=-323±63(stat.)±11(syst.) eV 

 

     It is appropriate to present the results of earlier experiments (see, for exam-

ple, [41]), in particular, according to the measurements by Davies et al (1979): 

 

E1s=+40-50 eV, Bird et al (1983) 

 

E1s=+180-190 , Izycki et al (1980) 

 

E1s=+260-270 eV. 

 

     Finally, the most recent DEAR (DAFNE Exotic Atom Research) experiment,  

performed on the DAFNE facility at the Frascatti laboratory (Frascatti, Italy, 

2005),  allowed to get the following result: 

 

E1s=-194±37(stat.)±6(syst.) eV; 

 

     Now using the “electromagnetic” values of the transition energy, obtained in 

theoretical calculation and the latest experimental values available, it is not dif-

ficult to estimate the shift of the 1s level in spectrum of the kaonic hydrogen due 

to the strong kaon-nucleon interaction. For different values Eexp(2p-1s) then one 

could obtain: 

 

E1s=-6440+6481=41эВ, E1s=-6675+6481=-194 eV, 

 

E1s=-6960+6481=-479 eV. 

 

Note that the exact coincidence of the theoretically estimated (-194 eV) 

and the experimental and measured "strong" shift here is, obviously, fortunately 
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random. In contrast to the considered below kaonic helium, the "strong" shift of 

the 1s level in the hydrogen atom is rather large in absolute value.  

     In any case, the calculated "electromagnetic" value of the transition energy 

and further comparison with the experimental value of the transition allowed us 

to obtain a theoretical estimate of the "strong" shift in kaonic hydrogen, which is 

in excellent agreement with the DEAR experimental shift. 

Spectrum of kaonic nitrogen. Hyperfine structure and radiative transitions 

probabilities 

The kaonic nitrogen atom ( 14N), like the previous case of the kaonic hydro-

gen, belongs to the light KA. Its study is of a great interest, first of all, from the 

point of view of developing new X-ray standards. As a model of the charge dis-

tribution in the nucleus, we applied the model of a uniformly charged ball, the 

Gauss model, and the Fermi model. The influence of the choice of the potential 

describing the effect of vacuum polarization on the energy parameters of  KA 

has been in details studied too.  

To take into account the effect of vacuum polarization, we used the standard 

Uehling-Serber potential and the generalized potential of the form [1] taking in-

to account the finite size of KA nucleus. The relativistic QED corrections of 

higher orders are also taken into account, including the relativistic recoil correc-

tion. 

     In Table 3 there are presented the results of calculating the energy (electro-

magnetic) contributions (the main Coulomb correction, the correction for the 

vacuum polarization, the relativistic correction for the recoil effect and the hy-

perfine shift) to the 8k-7i transition energy in the spectrum of kaonic nitrogen: 

the data of calculations on the basis of theory by Indelicato et al [43,50] and our 

theoretical approach. 

Table 3 also shows the error caused by the inaccuracy  in determining the 

mass of the К-kaon. Our values, given in Table 3, correspond to the Gaussian 

model of charge distribution in the nitrogen nucleus.   

Calculation using other models showed the difference, which is for the 

model of a uniformly charged ball (0.8 eV) and the Fermi model (0.5 eV). 
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Table 3 – Energy contributions (in eV) to the 8k-7i transition energy in 

the spectrum of kaonic nitrogen 

Contributions 8k-7i,   

Theory [43,50]   

8k-7i 

Present work 

Coulomb Con-

tribution 

2968.4565 2968.4492 

Vacuum polari-

zation 

1.1789 1.1778 

Relativistic re-

coil effect 

0.0025 0.0025 

Hyperfine shift -0.0006 -0.0007 

Full energy 2969.6373 2969.6288 

Error 0.096 0.096 

 

The value corresponding to the correction for vacuum polarization, obtained in 

the approximation of the standard Uehling-Serber potential (i.e., without taking 

into account the contribution of the vacuum of polarization corrections of higher 

orders in the parameter Z , namely Wichmann-Kroll, Calen-Sabri, etc.) is 

1.1665 eV, while the corresponding value with accounting for the indicated cor-

rections is 1.1778 eV.  

     According to estimates by Indelicato et al. [43, 50], who performed a com-

plete calculation of the vacuum of polarization corrections of higher orders in 

the parameter, the sought contribution is 0.01 eV.  

Thus, the use of the generalized Uehling-Serber potential turns out to be 

more efficient in comparison with the standard Uehling-Serber approximation, 

which is usually used in calculating the spectra of both usual (purely multielec-

tron) and exotic atomic systems.  

     On the other hand, for atoms with a low nuclear charge, the sought contribu-

tion to the vacuum of polarization corrections remains insignificant. Naturally, 

with an increase in the nuclear charge, in the transition to heavy KA, this contri-

bution will increase significantly.  

The PT formalism for evaluating the vacuum of polarization corrections 

of higher orders in terms of Z , naturally, ceases to be correct, and a nonpertur-

bative approach is required here. 

     In Table 4 we present the results of calculating the energies (in eV) of transi-

tions between the components of the hyperfine structure 8k-7i in a spectrum of 
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the kaonic nitrogen: 1) the theoretical data, obtained within the theory by Ineli-

cato et al [43,50] and our theoretical approach.  

 

Table 4 – Energies (in eV) of transitions between the components of the 

hyperfine structure 8k-7i in the spectrum of kaonic nitrogen 

F-F’ Е, 

Theory [43,50]   

Е, 

Present work 

8-7 2969.6365 2969.6289 

7-6 2969.6383 2969.6298 

7-7 2969.6347 2969.6264 

6-5 2969.6398 2969.6345 

6-6 2969.6367 2969.6284 

6-7 2969.6332 2969.6248 

 

 

     Similarly, in Table 5 we present  the results of calculating a probabilities  А 

(in 1013 s-1) of the transitions between the components of the hyperfine structure 

8k-7i in the spectrum of kaonic nitrogen: 1) the theoretical data , obtained on the 

basis of calculation within the theory by Indelicato et al [43,50] and 2) data, ob-

tained on the basis of our theoretical approach.  

Analysis of the data presented shows, in principle, a reasonable agreement 

between the results of both theories. It should be noted that the radiative correc-

tions are taken into account in our theory within the combined generalized Ueh-

ling-Serber approach and method [2].  

This, on the one hand, explains the difference in the results, on the other 

hand, the data we obtained should be considered as the most accurate at the 

moment. The same applies to the analysis of the obtained values of the probabil-

ities of transitions between the components of the hyperfine structure 8k-7i in 

the spectrum of kaonic nitrogen.  

The considered transitions in the spectrum of kaonic nitrogen actually be-

long to the so-called Rydberg transitions, which largely demonstrate hydrogen-

like properties; therefore, as a rule, the results of various theories for such transi-

tions are, as a rule, in good agreement with each other. 
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Table 5 – Probabilities А (1013 с-1) of transitions between the components 

of the hyperfine structure 8k-7i in the spectrum of kaonic nitrogen 

F-F’ A 

Theory [43,50]   

A  

This work 

8-7 1.54 × 1013 1.51 × 1013 

7-6 1.33 × 1013 1.32 × 1013 

7-7 1.31 × 1013 1.29 × 1013 

6-5 1.15 × 1013 1.12 × 1013 

6-6 0.03 × 1013 0.02 × 1013 

6-7 - 0.004 × 1013 

 

     In Table 6 we present the results of our calculation of the energy (electro-

magnetic) contributions (the main Coulomb correction, the correction for vacu-

um polarization, the relativistic correction for the recoil effect and the hyperfine 

shift) to the 8i-7h transition energy in the spectrum of kaonic nitrogen.  

 

Table 6 –  Energy contributions (in eV) to the 8i-7h transition energy  

in the spectrum of kaonic N 

Contributions 8i-7h 

Present work 

Coulomb Contribution 2968.5344 

Vacuum polarization 1.8758 

Relativistic recoil 0.0025 

Hyperfine shift -0.0009 

Full energy 2970.4118 

Error 0.096 

 

The data on the energy contributions presented here correspond to the use 

of the Gaussian model of the charge distribution in the nucleus.  

Similarly to the previous case, an error is also indicated due to the in ac-

curacy  in determining the mass of the К-. kaon.  

The value corresponding to the correction for the polarization of the core, 

obtained in the generalized Uehling-Serber approximation (i.e., taking into ac-

count the contribution of the vacuum of polarization corrections of higher orders 

in the parameter Z ) is 1.8758 eV. 
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     Further, in Table 8 we present the results of our calculation of the energies 

(in eV) of transitions between the components of the hyperfine structure 8i-7h in 

the spectrum of kaonic nitrogen. 

 

Table 7 – Energies (in eV) of transitions between the components of the 

hyperfine structure 8i-7h in the spectrum of kaonic nitrogen 

F-F’ Е,  

This work 

7-6 2970.4107 

6-5 2970.4135 

6-6 2970.4086 

5-4 2970.4193 

5-5 2970.4114 

5-6 2970.4073  

 

Correspondingly, in Tables 8 and 9 we present the results of our calculation of  

probabilities А (in 1013 s-1) of transitions between the hyperfine structure com-

ponents 8i-7h and 7h-6g in the spectrum of kaonic nitrogen. Note that, for the 

first time in a theory of the kaonic atomic systems, a consistent relativistic ener-

gy approach has been generalized and applied to calculating the probabilities of 

radiative transitions between the components of the hyperfine structure,  

 

Table 8 – Probabilities А (1013, s -1) of transitions between components of 

the hyperfine structure 8i-7h in the spectrum of kaonic nitrogen 

 

F-F’ Р,  

This work 

7-6 1.16 × 1013 

6-5 0.99 × 1013 

6-6 0.96 × 1013 

5-4 0.81 × 1013 

5-5 0.02 × 1013 

5-6 0.005 × 1013 
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Table 9 –  Probabilities А (1013, s-1)  of transitions between the compo-

nents of the hyperfine structure 7h-6g in the spectrum of kaonic nitrogen 

 

F-F’ Р,  

This work 

6-5 0.82 × 1013 

6-6 0.76 × 1013 

5-4 0.42 × 1013 

5-5 0.01 × 1013 

5-6 0.001 × 1013 

 

To conclude, let us note that a consistent relativistic approach to calculation of 

energy and spectral parameters of the kaonic exotic atomic systems with ac-

counting for the nuclear radiative (quantum electrodynamics), hyperfine and 

strong interactions is presented.   

The approach is naturally based on using the relativistic Klein-Gordon-

Fock equation with introduction of electromagnetic and strong interactions po-

tentials. To take a strong kaon-nuclear interaction into account, the generalized 

optical potential method is applied.   As an illustration, different  results of com-

puting the energy and spectral characteristics for some kaonic atoms are pre-

sented.  

In particular, the results of calculating the binding energies of various 

atomic levels in the hydrogen and nitrogen kaonic atoms are listed and obtained 

within the H-like model of Iwasaki, the method of Indelicato et al and our ap-

proach (here the Fermi model of the charge distribution in the nucleus is used). 

In addition, the results of calculating the energy (electromagnetic) contributions 

(the main Coulomb correction, correction for vacuum polarization, relativistic 

correction for the recoil effect, a hyperfine shift) to the energy of the 8k-7i, 8i-7h 

transitions in the spectrum of kaonic nitrogen are listed too.   

In principle, one should keep in mind that a physically reasonable agree-

ment between experimental and theoretical data for the kaonic atomic systems 

can be achieved only with simultaneous accurate and correct consideration of 

relativistic, radiation, and nuclear effects. The further improvement and refine-

ment of the theoretical approach and increasing the calculational data accuracy 

should include the corresponding development of model of the strong kaon-

nuclear interaction such as receiving more exact data about the kaon-nuclear po-

tential parameters.  
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CONCLUSIONS 

 

We present a consistent relativistic approach to calculation of energy and 

spectral parameters of the kaonic exotic atomic systems with accounting for the 

nuclear radiative (quantum electrodynamics), hyperfine and strong interactions. 

The approach is naturally based on using the relativistic Klein-Gordon-Fock 

equation with introduction of electromagnetic and strong interactions potentials. 

To take a strong kaon-nuclear interaction into account, the generalized optical 

potential method is applied.  In order to take the nuclear (the finite nuclear size 

effect) and radiative (quantum electrodynamics) corrections into account, the 

generalized Uehling-Serber approach is applied.  The elements of the hyperfine 

structure theory of the kaonic atoms (KA) are presented. As an illustration, there 

are results of calculating the binding energies of various atomic levels in a hy-

drogen KA obtained within the H-like model of Iwasaki, the method of Indelica-

to et al and our approach (here the Fermi model of the charge distribution in the 

nucleus is used). Using our calculated "electromagnetic" values of the transition 

energy and a set of available latest experimental values, it is calculated a shift of 

the 1s level in kaonic hydrogen, due to the strong kaon-nucleon interaction; the 

calculated "electromagnetic" value of the transition energy and further compari-

son with the experimental value of the transition allowed to obtain a theoretical 

estimate of the "strong" shift in kaonic hydrogen, which is in excellent agree-

ment with the DEAR experimental data.  In addition, the results of calculating 

the energy (electromagnetic) contributions (the main Coulomb correction, cor-

rection for vacuum polarization, relativistic correction for the recoil effect, a hy-

perfine shift) to the energy of the 8k-7i, 8i-7h transitions in the spectrum of ka-

onic nitrogen are presented and compared with the alternative theoretical data by 

Indelicato et al.  
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