
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gpaa20

International Journal of Parallel, Emergent and
Distributed Systems

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gpaa20

Modelling the behavioural component of the
emergent parallel processes of working with graph
databases using Petri net-tools

Stanislav Velykodniy, Zhanna Burlachenko & Svitlana Zaitseva-Velykodna

To cite this article: Stanislav Velykodniy, Zhanna Burlachenko & Svitlana Zaitseva-Velykodna
(2021): Modelling the behavioural component of the emergent parallel processes of working with
graph databases using Petri net-tools, International Journal of Parallel, Emergent and Distributed
Systems, DOI: 10.1080/17445760.2021.1934836

To link to this article: https://doi.org/10.1080/17445760.2021.1934836

Published online: 30 May 2021.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gpaa20
https://www.tandfonline.com/loi/gpaa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17445760.2021.1934836
https://doi.org/10.1080/17445760.2021.1934836
https://www.tandfonline.com/action/authorSubmission?journalCode=gpaa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gpaa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17445760.2021.1934836
https://www.tandfonline.com/doi/mlt/10.1080/17445760.2021.1934836
http://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2021.1934836&domain=pdf&date_stamp=2021-05-30
http://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2021.1934836&domain=pdf&date_stamp=2021-05-30

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS
https://doi.org/10.1080/17445760.2021.1934836

Modelling the behavioural component of the emergent parallel
processes of working with graph databases using Petri net-tools

Stanislav Velykodniy a, Zhanna Burlachenko a and Svitlana Zaitseva-Velykodna b

aAutomated Environmental Monitoring Systems Department, Odessa State Environmental University, Odessa,
Ukraine; bInformatics Department, Odessa State Environmental University, Odessa, Ukraine

ABSTRACT
The article focuses on the transformation of the behavioural UML diagrams
modelled by the authors, which reflect the emergent manifestations of the
life cycles of working with graph databases (GDB), to models in the form of
Petri nets. Such a transformation process was carried out for the diagrams
of objects, states, sequences, and activities. The extended UML 2.5 nota-
tion and Enterprise Architect 14.0 CASE tool were used in the formation of
the project architecture. Modelling of the emergent parallel processes of
working with GDBs in the form of a Petri net might initially seem to make
the sequence more complicated for the designer to perceive than while
using UMLmodelling, in which the relationships between entities on a dia-
gramare obvious to the user. Conversely, the representation of behavioural
models in the form of Petri nets facilitates the reflection of other impor-
tant emergent points, in particular, by demonstrating objects relationship,
dynamic information updates, components, or other necessary information
concerning parallel GDB design.

ARTICLE HISTORY
Received 27 February 2021
Accepted 23 May 2021

KEYWORDS
Graph database; Petri net;
UML diagram; behavioural
modelling; structure;
rendering

Introduction

Currently, there is a substantial number of software tools designed for the performance of a consider-
able range of specialised tasks. Some of them are limited to a single industry, while others are widely
applied. Still, the general trend is directed at the specialisation of software products. A large number of
software products with a wide range of modelling characteristics are developed, with BRL-CAD being
one of such CAD systems.

BRL-CAD is a specialised open-source cross-platform system. It is a powerful 3D CAD for modelling
three-dimensional objects using CSG methods. This CAD includes an interactive geometric editor,
parallel raytracing, rendering, and geometric analysis.

Since the operation of BRL-CAD software is based on a large number of parallel processes, the best
methodology formodelling synchronous interaction that canperform suchmodelling and analyse the
emergent parallel processes and flows is the Petri nets tool.

Additionally, since early 2020, the topic of the article has unexpectedly gained relevance. Such an
increase in relevance is associated with the implementation of quarantine measures and a significant
slowdown in business processes since in the fall of 2019, there was still no model of the impact of the
coronavirus pandemic on both business and economy.

CONTACT Stanislav Velykodniy velykodniy@gmail.com Automated Environmental Monitoring Systems Department,
Odessa State Environmental University, Lvivska str., b. 15, off. 130. 65016, Odessa, Ukraine

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Supplemental data for this article can be accessed here. https://doi.org/10.1080/17445760.2021.1934836

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17445760.2021.1934836&domain=pdf&date_stamp=2021-06-01
http://orcid.org/0000-0001-8590-7610
http://orcid.org/0000-0001-8451-5527
http://orcid.org/0000-0001-7453-8821
mailto:velykodniy@gmail.com
https://doi.org/10.1080/17445760.2021.1934836

2 S. VELYKODNIY ET AL.

Considering the current circumstance caused by quarantine restrictions, most business segments
cannot afford toorder anewcommercial CAD fromthedeveloper,which iswhereopengraphicalmod-
elling systems gain relevance, as exemplified by BRL-CAD. The primary point of interest is the process
of modelling parallel streams of graphic information using Petri nets to analyse free and unapplied
resource channels of the BRL-CAD system.

Materials andmethods

Petri nets are a modelling tool widely used in computer science, industry, engineering, project man-
agement, and business process reengineering. In this article, the authors use themethods introduced
in the articles which articulated the basic aspects of the transformation of UML models to a differ-
ent behavioural representation. This method is addressed in the research by [1], in which equivalent
ratios ofUMLdiagramsandcorrespondingOETPNmodelswere applied. Suchmodels haveproveneffi-
cient in research materials related to the behaviour of urban transport and its deployment schemes,
in particular, the connection of methods of representation of objects and diagrams of machines. Such
diagrams are widely used to process behavioural modelling materials.

Themethodsof describingpossible states illustrate behaviour over long life cycles [2]. Thematerials
of these studies usemethods of machine diagrams verification in UML notation. At the same time, the
methods of Petri nets analysis are well suited for researchmaterials related to the parallel behaviour of
systems. The methods allowing to switch frommodels in UML representation to materials in the form
of Petri nets require thorough verification of behavioural relationships.

The research materials use formal methods of testing the behaviour of block diagrams presented
in [3]. Such methods allow us to gradually solve problems related to software design. However, it
is important to control the behaviour of block- and/or UML diagrams’ activity, which is efficiently
accomplished by Petri models with a colour representation of the required materials. In this case,
the transformation methods imitate the dynamic changes of states, values, and expressions, and the
resulting Petri net is verified for the correctness of its behaviour by using Coloured Petri Nets (CPN)
methods.

The CPNmethod is an effective approach to formalising and analysing UML state diagrams. In this
respect, the materials of the research by [4] suggest a method of building UML diagrams based on
a returned report on software design. However, in this case, the inaccurate semantics of UML dia-
grams during model transformation does not allow strictly adhere to the formal semantics of Petri
nets.

In the case of real-time systems, the key role is played by the methods of analysis of performance
parameters. Although performance analysis is carried out following the development of the system,
performance can be enhanced at the early stages. In this case, the quality of the system can be
improved using the transformation methods presented in the materials of [5]. In this article, the anal-
ysis of modelling and analysis of real-time and embedded systems (MARTE) profile represents the
performance domain in the form of UML-diagrams sequence models. The methods of transforming
such diagrams into a generalised stochastic Petri net model allow maintaining the rules for present-
ing themeta-model and add the Atlas Transformation Language (ATL). The tool used for verifying the
suggested research is the applicationof thematicmaterials from theproductiondomain of the Kanban
system.

Analytical review of sources

A distinctive component of computer graphics tasks is the processing of graph databases (GDBs),
which are essentially ‘ordinary’ databases built on mathematical algorithms for image reconstruc-
tion based on the generated statistical coordination data. Although not every CAD system has such
features, the latter is necessitated by the current trends.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 3

It is a widely known fact that software architecture is undergoing several changes. Such a state-
ment also applies to updating GDBs. In case it is necessary to perform an analysis of architecture, as
done by the authors of the article [6], and switch back to the software, some difficulties can emerge
in the automation of the return route. Analysis of the materials of the publications of the last decade
has revealed a significant number of methods and approaches based on model transformation [7]
to exclude non-functional details from software architectural descriptions [8]. The methods of bidi-
rectional transformation of UML-models with maintained accessibility properties were initiated in the
research by [9]. This method has been extended by using Generalized Stochastic Petri Nets (GSPN) to
analyse and summarise changes made with GDB.

The basic elements of the Petri nets theory are presented in the monograph by [10]. Behavioural
models reflecting the advantages of using the Petri nets toolkit without reference to a specific
programming language are set out in [11].

The classic publications [12–14] are devoted to the study of behavioural and structural properties
and methods of analysing the Petri nets. Essentially, [14] contains an entire section devoted to mod-
elling a parallel system based on graphs, which makes it possible to develop UML modelling based
on this study. In [15] discusses stochastic networks and their application to performance modelling,
as well as the modelling of high-level networks using logic programming techniques. Over time, the
research works of these authors got embodied in the methodology [16] and further in the series of
studies [17–19] which established the basis for the development of a new direction in behavioural
modelling of parallel processes and facilitated the publication of this special issue of ‘International
Journal of Parallel, Emergent and Distributed Systems’ journal.

Considering the research works whose findings directly prompted the authors to come up with
the idea of transforming behavioural UML diagrams and their representation in the form of Petri nets
when working with GDBs, the literature sources below are suggested to focus on.

The researchby [20] suggestsmetrics formeasuring scalability basedon similaritymetrics and com-
plexity between two business process models. To this end, a Petri net was used tomodel the business
process. Similarity metrics are measured by behavioural and structural Petri models, as well as by the
complexity of the control flow, tomeasure the complexity of the Petri net. Considering the experiment
illustrated, this article uses 4 arithmetic Petri models to measure scalability metrics.

The research by [21] suggests a new model of the approach to the elimination of deviations
between the activities of the processmodel and the documentation in the generated event logs in the
representation of the logic of Petri nets in information systems. Simultaneous transition pairs between
selections are built based on process trees.

In the research by [22], a method that detects the inefficient behaviour of the Human–Computer
Interaction (HCI) systemwas developed, assuming that at least one optimal HCI strategy is known. This
method is based on tracking user behaviour logs using a Java application. The article also presents an
interesting illustration of the application of this method to the environment task by using simulated
realistic user behaviour.

The research by [23] suggests a set of requirements for modelling and documenting complex sys-
tems. Considering that most modelling methodologies, such as SSAD, UML, and BPMN, are used to
illustrate complex systems, there is a need is their extension and refinement by using Petri nets mod-
els. This article also compares system block diagrams with Petri net representation and assesses the
modelling of systems based on block diagrams and Petri nets.

Results of experimental studies

First, each model of interaction with GDB in open BRL-CAD using UML methodology with extended
notation 2.5 will be presented to ensure the clarity of perception for analysts and system architects.
Thismodel representationwasperformedby the authors of this article in the researchworks by [24,25].
Subsequently, the transformation of each model from a representation in the form of a UML diagram
to the form of a Petri net will be addressed.

4 S. VELYKODNIY ET AL.

Figure 1. Object diagram for the BRL-CAD environment.

Table 1. Specification of the OEDM project environment.

Petri net element Symbol Function (purpose) Position or Transition (P / T)

Activation AV Activation of input/output objects T
BRL-CAD BC CAD P
Clipboard+ Compiler CC Processing device P
Console CL Input device P
Command Processing CP Command Processing T
Data Recording DR GDB data recording T
GUI GUI Graphic data output P
Management Line ML System notification device P
Output Results OR Graphic information transmission to the design T

Modelling of an object diagram

The designed generalised object diagram (OD) illustrated in Figure 1 uses object entities. Before its
transformation into a Petri net, a new concept that more accurately describes this diagram in a net-
work representation – the object environment description model (OEDM) – will be introduced. This
model demonstrates the interaction between abstract functional devices and software (establishment
of communication links between objects) and their capabilities.

The specification of the OEDM project environment is illustrated in Table 1.
The structure of models represented in the form of Petri nets is built as follows:

M = {P, T , I, O,µ}, (1)

where P – net positions; T – transitions; I – input positions and transitions; O – output positions and
transitions; µ – number of tokens in a specific position.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 5

Figure 2. Network topology of the object environment description model.

Concerning OEDM, the structure (1) assumes the following form:

M1 = {P1, T1, I1, O1,µ},
where P1 = BC, CC, CL, GUI, ML; T1 = AV, CP, DR, OR,which is described in more detail below.

P1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BC(I,O,µ)

⎧⎨
⎩

I = {DR,DR,DR}
O = {AV ,AV ,AV}

µ = 6

CC(I,O)

{
I = {CP,CP}
I = {CP,CP}

CL(I,O)

{
I = {AV}
O = {CP}

GUI(I,O)

{
I = {AV ,OR,OR}
O = {DR,DR,DR}

ML(I,O)

{
I = {AV}
O = {CP}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; T1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AV(I,O)

{
I = {BC, BC, BC}
O = {CL,GUI,ML}

CP(I,O)

{
I = {CL,ML}
O = {CC,CC}

DR(I,O)

{
I = {GUI,GUI,GUI}
O = {BC, BC, BC}

OR(I,O)

{
I = {CC,CC}

O = {GUI,GUI}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The network topology of OEDM is illustrated in Figure 2.
‘BC’ position is the initial condition for CAD operation. It contains 6 tokens and activates through

the ‘AV ’ transition the operation of input/output devices (positions: ‘CL,’ ‘ML,’ ‘GUI’). With the launch
of ‘BC,’ the first 3 tokens move to the specified positions. Further, the condition for the command pro-
cessing (‘CP’ transition as an event) is the transfer of information from the ‘ML’ and ‘CL’ positions in the
form of entered commands. Generally, as seen from Figure 2 illustrating Petri net, OEDMdescribes the
standard steps a user takes when working with CAD:

• opening the ‘BC’ programme, which leads to the activation of ‘AV ’;
• creating a primitive using the ‘CL’ and ‘ML’ console commands;
• processing of ‘CP’ commands and processing of graphic information ‘CC’;
• the output of the ‘OR’ command results to the ‘GUI’ screen;
• creating and maintaining the hierarchy of ‘DR’ design.

6 S. VELYKODNIY ET AL.

Figure 3. State machine diagram of GDB for the BRL-CAD environment.

As seen from the simulation results, the ‘GUI’ position can contain 2, 3, or 4 tokens, which means
a step-by-step update of the graphic information built on the screen. Therefore, the condition for the
update is the execution of the ray tracing command.

OEMs will be useful in cases of a necessity to assess the consequences of changes since they illus-
trate which objects interact with each other and how they are labelled. When making changes to
objects in the form of tokens, it immediately becomes evident which other surrounding objects will
be affected. For instance, the first transition in the given net will be the opening of a programme that
moves one token to three objects at once.

The second transition of tokens is based on the processing of ‘CP’ graphic information to create ‘CC’
primitives. The abovementioned processes transfer to the third step – output of the results of the ‘OR’
command on the ‘GUI’ screen. The standard step to take after building graphic objects is their visual-
isation. To this end, the abovementioned operation of ray tracing control should be carried out. After
that, it is possible to build a hierarchy of rays and createmore complex graphic objects bymaintaining
‘DR’ to the GDB of BRL-CAD (‘BC’).

During the implementation of OEDM for the BRL-CAD project, the structure of the Petri net was
determined by describing the key conditions and events in the form of positions and transitions.
Labelling in the form of tokens allowed to track the set communication connection and to model the
graphic information update on the user’s screen.

Statemachine DiagramModelling

The designed state machine diagram (SMD) concerning the GDB of the BRL-CAD environment is illus-
trated in Figure 3. This diagram demonstrates the possible states for a GDB. The initial UML diagram
was developed by the authors of this article in [24].

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 7

Table 2. Specification of state description model.

Petri net element Symbol Position or Transition (P / T)

Clipboard Activation CA P
Close Everything CE P
Continue to Exit the Software System CES T
Creating a Hierarchy CH T
Clipboard is Occupied by a Hierarchy COH P
Clipboard is Occupied by Primitives COP P
Clipboard is Occupied by Tracing Rays COT P
Erase from the Clipboard EC P
Expectations of Further Interaction EFI T
Execution of Primitives EP T
Exit the Software System ES T
GUI GUI P
Interface Interaction II T
Output of Primitives on the GUI OP T
Output of Results OR T
User U P
Update of Primitives UP T
Visualisation of the Existing Hierarchy and Primitives VE T

To perform the transformation of the state machine diagram to the state description model (SDM)
in the representation of Petri net, the specification of the correspondence of the states of the UML
diagram to the network elements will be developed (Table 2).

The SDM will be presented by the designations of the elements of Petri net in Table 2 and the
structure (1), as follows:

M2 = {P2, T2, I2, O2,µ},
where P2 = CA, CE, COH, COP, COT, EC, GUI, U; T2 = CES, CH, EFI, EP, ES, II, OP, OR, UP, VE.

P2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CA(I,O)

{
I = {II}

O = {CH, EP, ES, VE}
CE(I,O)

{
I = {CES}
O = {}

COH(I,O)

{
I = {CH}
O = {UP}

COP(I,O)

{
I = {EP,UP}
O = {OP}

COT(I,O)

{
I = {VE}
O = {OR}

EC(I,O)

{
I = {ES}
O = {CES}

GUI(I,O)

{
I = {OP,OR}
O = {EFI}

U(I,O,µ)

⎧⎨
⎩

I = {EFI}
O = {II}
µ = 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; T2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CES(I,O)

{
I = {EC}
O = {CE}

CH
EP
ES
VE

⎫⎪⎪⎬
⎪⎪⎭
I = {CA},O

⎧⎪⎪⎨
⎪⎪⎩

CH = {COH}
EP = {COP}
ES = {EC}
VE = {COT}

EFI(I,O)

{
I = {GUI}
O = {U}

II(I,O)

{
I = {U}
O = {CA}

OP(I) = {COP}
OR(I) = {COT}

}
O = {GUI}

UP(I,O)

{
I = {COH}
O = {COP}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The Petri net built according to the configured structure is illustrated in Figure 4.
The main logical chain of this model is that the user action is always performed using the ‘CA’

position and completed with the ‘EFI’ transition, which symbolises the start and the completion of
working with the environment. It should be noted that the work with a software product will start
with the interaction with its ‘II’ interface, i. e. start, and finish with deactivation or closing of the
product – ‘CE.’

8 S. VELYKODNIY ET AL.

Figure 4. Network topology of the state description model.

During the start of the operation, the Graphic Clipboard and the compiler are activated. The clip-
board is a stack for the shape processing commands that are currently being processed. The compiler
is a special module that processes command inputs and builds the graphical result on the screen after
the processing of these commands is completed.

In following a certain methodology of working with GDB, the first step is to create a primitive by
using the option of output into an updated project in a previously designedGDB. To this end, the com-
mand to create a certain type of ‘EP’ primitive, its size and position (if the position is not specified, the
primitive is created at the origin of the coordinates) is output from the console. The further process is
as follows: the clipboard receives certain information and saves it as long as it is processed by the com-
piler (‘COP’ position). After the compiler has processed all the information on the current command, in
case the result is correct, the data is output (‘OP’ transition) to the screen (‘GUI’ position) and recorded
in ROM. After several primitive figures are created, they are used to build a hierarchy (‘CH’ transition),
i. e. to create more complex figures (‘COH’ position).

As mentioned above, the conditions for creating more-complex shapes include their number
(more than two) and collisions (intersections). As soon as the command to build a complex shape
is transferred to a clipboard, the compiler processes it. However, at this stage, not only the results
are displayed on the screen, but also the replacement and update of the data from ROM (‘UP’ posi-
tion) is performed, as follows: ‘COP’ – ‘OP’ – ‘GUI’. After the commands are completed, the clipboard is
automatically cleared.

The next standard step after the creation of complex shapes is their visualisation (‘VE’ transition). To
this end, it is necessary to perform rays racing (‘COT ’ position). For this purpose, the pattern should be
set from the console or the command line (which constitutes the object and a dozen other standard
physical constants), after which one should go to a special panel of the command line and perform
tracing. The further procedure is similar: ‘clipboard-compiler-display’ (‘COT ’ – ‘OR’ – ‘GUI’). The only
difference is that the result is not saved in ROM, being only displayed on the screen. Another BRL-CAD
module called Archer is used to record the visualisation.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 9

The work with the GDB is completed by the visualisation, and therefore, the following actions are
described by an arc (‘CA’ – ‘ES’ – ‘EC’ – ‘CES’ – ‘CE’), which is illustrated in the Table 2, and do not require
additional explanation.

It should be separately noted that the given software product has some features that allow it to be
distinguished from others in the line of CAD systems. There is no such option as ‘Save Project / Upload
Project.’ Any action is processed by the compiler and automatically saved in ROM in the form of a GDB.

Such a system organisation is associated with both advantages and shortcomings.
Advantages: in cases of the emergency closure of the environment, all information is saved, which

is impossible to overestimate.
Shortcomings: in case amistake is made, it can be corrected only by removing the entire projected

figure and making changes to the hierarchy – another major shortcoming, the correction of which is
an established research prospect for the authors of this article.

After the transformation of the designed UML state diagram to the SDM in the form of a Petri net
and considering the analysis of its content, it is possible to draw intermediate but fairly unexpected
conclusions. In particular, since BRL-CAD, which later became open, was built for the needs of the
US military, it can be assumed that the original implementation of the principles of working with the
environment described was the key point of interest.

Sequence diagrammodelling

The sequence diagram (SD) is designed to illustrate in which sequence the programmer performs
actions when working with the GDB of the BRL-CAD environment. In such diagrams, messages are
arranged from top to bottom, with each being labelled with a respective name.

Since the SD designed by the authors of the article [24] essentially describes itself (Figure 5) in the
illustrated methodology of the sequence, it will be omitted in this article to avoid duplication of the

Figure 5. Sequence diagram for working with GDB in BRL-CAD environment.

10 S. VELYKODNIY ET AL.

Table 3. Specification of development sequence model.

Petri net element Symbol Position or Transition (P / T)

Console CL P
Graphic User Interface GUI P
Management Line ML P
User U P
Create simple shapes 1.0 T
Boolean operations on figures 1.1 T
Shapes output to the screen 1.2 T
Create hierarchy 1.3 T
Work with separate hierarchy elements 1.4 T
Pattern, colour and light angle setup 1.5 T
Ray tracing 1.6 T
Pattern, placing and hierarchy verification 1.7 T
Output to the screen 1.8 T

illustrated information. If necessary, SDcanbeused todemonstrate arguments and somecontrol infor-
mation. Similarly, it is possible to show the reflective messages that the object sends to itself – in such
a case, the arrow of the message points to the same lifeline.

The definition of an SD itself illustrates the sequence of actions. However, with this structure being
analysedby theperformer (programmer), a problemofmisconceptionarises that only sucha sequence
of actions shouldbeperformedas recommendedby thediagram,which is not the case. Everymessage
that starts from the lifetime of a ‘User’ object can be executed first at any time. This feature questions
the suitability of SDs as a tool for modelling processes that can start from one object and transfer to
others in the multiple structures of options.

Such special modelling of the representation of the information flows connecting other system
resources can maintain the tools of the labelled Petri nets, in which the fulfilment of the condition
is represented by a token in a position corresponding to this condition. The model that will reflect
such features of the development of the graphical representation of information will be referred to
as the development sequence model (DSM). The correspondence of the UML-diagram entities to the
designation of the elements of the Petri net is illustrated in Table 3.

As can be seen, the designation of transitions (events) of the DSM corresponds to the numbering
of messages on the SD.

After the transformation of the SD into the DSM is as established in Table 3, the DSM represented
in the form of a Petri net shall be illustrated as a structure in accordance with (1):

M3 = {P3, T3, I3, O3,µ},
where P3 = CL; GUI, ML, U; T3 = 1.0; 1.1; 1.2; 1.3; 1.4; 1.5; 1.6; 1.7; 1.8.

P3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CL(I,O)

{
I = {1.0; 1.1; 1.3}
O = {1.2; 1.4}

GUI(I,O)

{
I = {1.2; 1.8}

O = {}
ML(I,O)

{
I = {1.4; 1.5; 1.6; 1.7}

O = {1.7; 1.8}

U(I,O,µ)

⎧⎨
⎩

I = {}
O = {1.0; 1.1; 1.3; 1.5; 1.6}

µ = 8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; T3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0
1.1
1.3

⎫⎬
⎭ (I,O)

{
I = {U}
O = {CL}

1.2(I) = {CL}
1.8(I) = {ML}

}
O = {GUI}

1.4(I) = {CL}
1.5
1.6

}
I = {U}

1.7(I) = {ML}

⎫⎪⎪⎬
⎪⎪⎭
O = {ML}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The Petri net built according to the presented structure is illustrated in Figure 6.
The network illustrated in Figure 6 is used to simulate the fundamental steps of the ‘User’ object,

which must be taken when working with GDB. The number of initial tokens (8) corresponds to the
number of messages on the SD. All objects (tokens) displayed in the ‘GUI’ move to the ‘DR’ transition

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 11

Figure 6. Network topology of the development sequence model.

Figure 7. Activity diagram of GDB building in BRL-CAD environment.

12 S. VELYKODNIY ET AL.

Table 4. Specification of a dynamic activity model.

Petri net element Symbol Position or Transition (P / T)

Are the Figures Adjacent? AFA P
Additional Processing AP T
Are There the Right Shapes? ATR P
Check C P
Create a Compiled Image CCI T
Colour and Material CM P
Compiler of Regions and Combinations CRC P
Create Regions from Simple Shapes CRS T
Compiler of Simple Figures CSF1, CSF2 T, T
Create a Simple Shape CSS T
Form F P
Graphic Database GDB T
Graphic User Interface GUI P
Hierarchical Tree HT T
Image of the Figure IF T
Is It Set Correctly? ISC P
Is There the Right Combination? ITR P
No 1–4 N1, N2, N3, N4 T, T, T, T
Output of the Finished Image OFI T
Placing P P
Ray Tracing Module RTM P
Start S T
Simple Figure SF P
Task Type TT P
User U P
User Decision UD P
Yes 1–3 Y1, Y2, Y3 T, T, T

and then to the ‘BC’ position, as illustrated in Figure 2. The given DSM does not reflect these actions,
as they have no relation to user behaviour.

Thus, in the executed subunit, a DSM in the form of a Petri net was built following the developed
SD for working with GDB in the BRL-CAD environment. The model illustrates the presentation of the
user’s step-by-step behavioural scenario.

Modelling of the activity diagram

An activity diagram (AD) is a special diagram reflecting the decomposition of information flows of
activity on the relevant tracks. Activity means the specification of the behaviour demonstrated in the
form of coordinated sequential or parallel execution of subordinate elements: embedded activities
and individual actions interconnected by flows directed from the out of one node to the input of
another.

In our case, the AD was designed to create a GDB in the BRL-CAD environment. This diagram was
elaborated by the authors of this article in [24] and is presented in Figure 7.

The behavioural UML diagram shall be transformed into a dynamic activity model (DAM) repre-
sented by a Petri net. For this purpose, the entities included in the AD will be presented in the form
of Table 4 providing a list of DAM elements, designations of the respective elements and information
flows, as well as the redefinition of activities to the form of representation of the Petri net: position or
transition (P / T).

Next, let’s proceed to the design of a mathematical model of the DAD structure in the form of a
Petri net, in accordance with the following representation (1):

M4 = {P4, T4, I4, O4,µ},

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 13

where P4 = 15 = AFA, ATR, C, CM, CRC, GUI, F, ISC, ITR, P, RTM, SF, TT, U, UD; T4 = 18 = AP, CSF1, CSF2,
CRS, CSS, CCI, GDB, HT, IF, N1, N2, N3, N4, OFI, S, Y1, Y2, Y3.

P4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AFA(I,O)

{
I = {Y2}

O = {N3, Y3}
ATR(I,O)

{
I = {GDB}

O = {N2; Y2}
C(I,O)

{
I = {CCI}
O = {HT}

CM(I,O)

{
I = {AP}

O = {CSF2}
CRC(I,O)

{
I = {Y3}
O = {IF}

GUI(I,O)

{
I = {IF;OFI}

O = {}
F(I,O)

{
I = {CSS}

O = {AP;CSF1}
ISC(I,O)

{
I = {CSF1;CSF2;CRS}

O = {N4;GDB}
ITR(I,O)

{
I = {HT}

O = {N1; Y1}
P(I,O)

{
I = {AP}

O = {CSF2}
RTM(I,O)

{
I = {Y1}
O = {OFI}

SF(I,O)

{
I = {CSS}

O = {AP;CSF1}
TT(I,O)

{
I = {B}

O = {CCI;CRS;CSS}

U(I,O,µ)

⎧⎨
⎩

I = {}
O = {S}
µ = 3

UD(I,O,µ)

⎧⎨
⎩

I = {N1;N2;N3;N4}
O = {CCI;CRS;CSS}

µ = 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

; T4

⎧⎪⎪⎨
⎪⎪⎩

AP(I,O)

{
I = {F; SF}
O = {CM; P}

CCI
CRS
CSS

⎫⎬
⎭ I = {TT ;UD},O

⎧⎨
⎩

CCI = {C}
CRS = {ISC}
CSS = {F; SF}

CSF1(I) = {F; SF}
CSF2(I) = {CM; P}

}
O = {ISC}

GBD(I,O)

{
I = {ISC}
O = {ATR}

HT(I,O)

{
I = {C}

O = {ITR}
IF(I,O)

{
I = {CRC}
O = {GUI}

N1(I) = {ITR}
N2(I) = {ATR}
N3(I) = {AFA}
N4(I) = {ISC}

⎫⎪⎪⎬
⎪⎪⎭
O = {UD}

OFI(I,O)

{
I = {RTM}
O = {GUI}

S(I,O)

{
I = {U}
O = {TT}

Y1(I,O)

{
I = {ITR}
O = {RTM}

Y2(I,O)

{
I = {ATR}
O = {AFA}

Y3(I,O)

{
I = {AFA}
O = {CRC}

⎫⎪⎪⎬
⎪⎪⎭

.

The designed structure is illustrated in the form of a Petri net in Figure 8.
The simulation is started from the ‘U’ position, which contains three tokens. Let’s consider first the

basic start of the process, i. e. the creation of a simple ‘CSS’ figure. To create a simple shape in the given
network model, the user has not only to enter the command title, but also specify ‘F’ and, if necessary,
‘AP,’ ‘P’ and ‘CM,’ as shown in Figure 8.

After these parameters are specified, all information is transmitted to the compiler of simple figures
(at the level of the physical code module, there is one compiler, which, however, will be divided for
clarity into sublevels: ‘CSF1’ and ‘CST2’). The specific feature of this network is the ‘ISC’ position, which
indicates that the condition is met and translates in such case to ‘GDB,’ or otherwise returns to ‘UD,’
where the decision is to be made by the user (two-token labelling).

Therefore, after the information is received by the compiler, such a check of the condition is per-
formed. Assuming that the conditions are not met, such information as ‘Shape is not created’ will
be issued at the discretion of the user, and the current command will be interrupted. If the check is
passed successfully, i. e. the ‘AFA,’ ‘ATR,’ and ‘CRC’ conditions are positively met, then ‘IF’ is executed,
and graphical information is displayed at the ‘GUI’ position.

14 S. VELYKODNIY ET AL.

Figure 8. Network topology of the dynamic activity model.

Another ‘TT ’ output after the creation of simple shapes is ‘CRC.’ During attempts to create regions,
the process of checking the ‘ISC’ condition, which is necessary for the creation of complex shapes, is
launched. If all conditions are met, recording to the memory and displaying on ‘GUI’ are processed.

As can be seen from the Petri net, at each unspecified stage of adoption, the decision is transmitted
to the ‘UD,’ which can be only reached through negative transitions ‘N1 – N4’ that are triggered in case
of non-compliance with the relevant conditions and positions.

The ‘TT ’ output is a branch: ‘CCI’ – ‘C’ – ‘HT ’ – ‘ITR’ – ‘Y1’ which means that after creating complex
hierarchical figures, it is possible to trace the ‘RTM’ image. Ray tracing is performed using a special
module after checking the fulfilment of certain conditions. It should be added that primitives can also
be traced, although such practice is not widely adopted due to its futility because, apart from complex
components of figures, it is necessary to perform a check for physical constants. To ensure correct
tracing, it is necessary to indicate the angle of incidence of light, the level of the transmitted light,
the material from which the figure is made, etc. Provided that all these parameters are specified cor-
rectly, an ‘OFI’ image that is perfectly suitable for use as a GDB component output to the ‘GUI’ can be
obtained.

Thus, the behavioural AD UML diagram was transformed into a DAM one with the representation
of its Petri net, which allows determining states, routes, and cycles of designing GDB in BRL-CAD.

Discussion

During the observations and discussions of the process of teaching users the basics of working with
GDB, this processwas initially presented in the formof behavioural UMLdiagrams. The emergent infor-
mation flowsweremodelled and documented using these diagrams. UML diagramswere also used to
study the internal structure of the GDB. However, when diagrams are large, complex, and branched,
their scenario behaviour is difficult for users to understand andhard to use to support decision-making
in the design and configuration of GDBs.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 15

It was suggested to additionally represent the behaviour during the configuration of the GDB in
the form of Petri nets, which proved an appropriate suggestion. The effectiveness of the suggested
models was confirmed experimentally by accelerating the process of behavioural learning the parallel
runningofGBD. Petri netswereproved apromising alternative toUMLdiagramsdue to thewide range
of parallel analysis and modelling capabilities. Network analytics can be used to study the emergent
behavioural properties of graphical processes. This modelling strategy was also used to describe how
it can support parallel GDB design processes.

Thus, modelling of work with GDB in the form of a Petri net can initially complicate for the designer
the perception of the sequence as compared to modelling by using UML methodology, in which the
location of links between entities is arranged on the top of the page to the bottom. Conversely, such a
spatial arrangement makes it easier to reflect other important aspects that might unexpectedly arise.
For example, it is possible to show the relationship of objects, dynamic updating of information on the
screen, the terms of connection of a particular component, or other information related to the design
of the GDB.

General results obtained

Research has shown that high rendering speed offers broad prospects for the application of BRL-CAD
in a range of industries, including military, industrial or training purposes, such as design and anal-
ysis systems in mechanical engineering, mechanical components, architectural structures, chemical
molecule structure, etc.

The advantage obtained over the equivalents ensures the wide scope of the application opportu-
nities for the BRL-CAD system, ranging frommodelling the structure of the atomic nucleus to galactic
dimensions.

Notably, the method of transforming behavioural UML-diagrams into the Petri nets was set out in
the article about achieving the set objectives,

The result of transformations of behavioural UMLmodels illustrates that all the presented Petri nets
models are scalable to each other in different propagation rates of positions and transitions increase,
which gives the obtained results a substantial advantage over the equivalents in the form of linear
transformations.

In illustrating the established differences with the equivalents, it can be stated that the scale
growth ratedetermines theextent towhich theexpandedgeo-database canbe transformed intomore
complex models.

It was established that the solution to the outlined problems is impossible without a profound
insight into the physical essence of the studied phenomena, development, and advancement of the
relevant theoretical provisions, as well as the practical implementation of the achieved results and
analysis of their illustrativeness.

Geometric transformationmethodshave longbeenused successfully inmany industries. Thenewly
developed methods of geometric modelling and their implementation in the systems of computer
processing of graphic information play an important role in this regard since they make it possible to
deal with the specifically established tasks in graphic processing.

Considering that in anyCAD, the events and interactionbetween the systemand thedesigner occur
asynchronously and independently (there is no link between the system response and the subsequent
actions of the designer, and the final decision ismade by the user based on data issued by the system),
for modelling and further research in this area, the use of Petri nets tools can be the best option for
modelling and further research of this field.

Research has shown that projectmanagers or users themselves develop their strategies for dealing
with repetitive tasks andprocesses.However, organisationshavedifficulty indetermining theextentof
the effectiveness of employees’ interaction with the software. Organisations typically train employees
to interact with the required software. One of the best examples of such interaction is the suggested
methodof transformingdiagramsof geo-databasemanagement. It should alsobeadded in this regard

16 S. VELYKODNIY ET AL.

that the obtained Petri nets illustrate the processes of configuration and interaction with open geo-
databases.

The obtained method of transformation provided recommendations for the gradual adapta-
tion of the behaviour of operators necessary to establish the optimal way of interaction with the
geo-databases with regard to the level of the mathematical competence of users and its further
advancement.

General conclusions

The research works discussed should continue being carried out considering the special interest in
computer graphics and due to the intensive development and implementation of CAD in various
fields of production and training. Although CAD BRL-CAD is acceptable for use for an experienced
designer, for a beginner or student, the process of its application can seem complicated. The mate-
rials that can be found on the World Wide Web are superficial and contain only a few dozen console
commands.

A detailed analysis of the environment revealed the presence of two modules contained in the
structure of CAD which can assist the potential system user to quickly design the necessary GDB.
Another fundamental feature of the package is the ability to support the design and analysis of visual
models based on complex objects consisting of a large set of graphical primitives.

Generally, the article achieved the set goal to model the emergent aspects of design, connection,
and further improvement ofGDBas a composite component of openBRL-CADusing themethodology
of representing these parallel processes in the form of Petri nets.

The performed researches of models of working with GDB are of importance since they allow to
improve BRL-CAD by transferring the offered Petri nets to high-level language coding and the pro-
vision of updating. After the research, it can be concluded that the strength of the system is the
extraordinary speed of visualisation, ray tracer, and rendering. Comparison with analogues justifies
the statement that the visualisation process is one of the fastest among the existing ones.

The prerequisite for this research was the modelling of the design framework in its representation
in the form of Petri nets, whichwill serve as the basis for the future technological rationale for building
GDB for connection to the updated open BRL-CAD.

The simulation resulted in building Petri nets based on the transformation of behavioural UML dia-
grams: states, sequences, activities, and, optionally, objects. The extended UML 2.5 notation and CASE
tools Enterprise Architect 14.0 were used in the formation of the design architecture.

The short-term objective of the research is the real-time implementation of the obtained models.
This process will take a long time, namely from 6months to a year, which can be attributed to the fact
that the ultimate goal of our transformations is to accelerate and record the time needed to train users
to use BRL-CAD graphic databases.

Importantly, this idea can be further adapted by other researchers to complete the next stage of
the study within the framework of the established plan to conduct the experiment and record the
learning results of the two groups of users in real time. One group will be trained using the traditional
approach, and the other will apply the Petri net models. Based on the numerical data, it is possible to
establish the timing for triggering the Petri nets transitions.

We also plan to expand the research by introducing the tools for modelling parallel processes in
the form of Sleptsov nets. The short-term objective of the research is the conversion of the developed
Petri nets to Sleptsov nets.

Another research perspective is the transformation of structural UML diagrams developed by
the authors of this article, including classes, components, composite structure, review of interac-
tion, and deployment to the representation in the form of Petri / Sleptsov nets. This presentation
will substantially facilitate the use and improvement of structural and static GDB models of open
CAD.

INTERNATIONAL JOURNAL OF PARALLEL, EMERGENT AND DISTRIBUTED SYSTEMS 17

Acknowledgments
The authors would like to express their gratitude to BRL-CAD corporation for the opportunity to openly use and test the
source files and plugins and the provided support for the cross-platformmethodology. The authors also thank James Lyle
Peterson, the author of themonograph [10], which contains the basics of Petri nets theory and has been the core reading
for the author of this article formore than 25 years. Additionally, the authors thank Professor Dmitry Zaitsev for providing,
by personal example, the motivation to perform the research presented in the article.

Disclosure statement
No potential conflict of interest was reported by the author(s).

ORCID
Stanislav Velykodniy http://orcid.org/0000-0001-8590-7610

Zhanna Burlachenko http://orcid.org/0000-0001-8451-5527

Svitlana Zaitseva-Velykodna http://orcid.org/0000-0001-7453-8821

References
[1] Santa MM, Cuibus OP, Al-Janabi D, et al. Relations of UML and OETPNModels. Proceedings of the 2020 IEEE Interna-

tional Conference on Automation, Quality and Testing, Robotics (AQTR); Cluj-Napoca, Romania; 2020. p. 1–6. DOI:
10.1109/AQTR49680.2020.9129999

[2] Lyazidi A, Mouline S. Formal verification of UML state machine diagrams using Petri nets. Proceedings of the inter-
national conference on networked systems; In: M Atig, A Schwarzmann editors. Networked systems. NETYS 2019.
lecture notes in computer science, vol 11704. Cham: Springer. p. 67–74. DOI: 10.1007/978-3-030-31277-0_5

[3] Gulati U, Vatanawood W. Transforming flowchart into coloured Petri nets. Proceedings of the 3rd International
Conference on Software and e-Business; 2019 Dec. p. 75–80. DOI: 10.1145/3374549.3374568

[4] Meziani L, Bouabana-Tebibel T, Bouzar-Benlabiod L. From Petri nets to UMLModel: a new transformation approach.
Proceedings of the 2018 IEEE International Conference on Information Reuse and Integration (IRI); 2018; Salt Lake
City, UT. p. 503–510. DOI: 10.1109/IRI.2018.00080

[5] Shailesh T, Nayak A, Prasad D. An UML based performance evaluation of real-time systems using timed Petri net.
Computers. 2020;9(4):94. DOI: 10.3390/computers9040094

[6] Velykodniy SS, Tymofieieva OS. Zaitseva-Velykodna SS the calculation method for indicators project estimation in
the implementation of software systems re-engineering. Radio Electron Comput Sci Control. 2018;4:135–142. DOI:
10.15588/1607-3274-2018-4-13

[7] Zaitsev DA. Toward the minimal universal Petri net. IEEE Trans Syst Man Cybernetics Syst. 2014;44(1):47–58. DOI:
10.1109/TSMC.2012.2237549

[8] Zaitsev DA. Simulating cellular automata by infinite Petri nets. J Cellular Automata. 2018;13(1-2):121–144.
[9] Cortellessa V, Eramo R, Tucci M. Availability-driven architectural change propagation through bidirectional model

transformations between UML and Petri net models. Proceedings of the 2018 IEEE International Conference on
Software Architecture (ICSA); 2018; Seattle, WA: IEEE; 2018. p. 125–129. DOI: 10.1109/ICSA.2018.00022

[10] Peterson JL. Petri net theory and the modeling of systems. New York (NY): Prentice-Hall, inc; 1981.
[11] Bandman OL. Behavioral properties of Petri nets (a survey of the French literature). Tekhn Kibern. 1987;5:134–150.
[12] IchikawaA,Hiraishi K. Analysis and control of discrete event systems representedbyPetri nets. In: Varaiya P., Kurzhan-

ski A.B. (eds)Discrete event systems:models andapplications Vol. 103. Springer; Berlin, Heidelberg. 1988. p. 115–134.
DOI: 10.1007/BFb0042308.

[13] Holloway LE, Krogh BH. Synthesis of feedback control logic for a class of controlled Petri nets. IEEE Trans Automat
Contr. 1990;35(5):514–523.

[14] Murata T. Petri nets: properties, analysis and applications. Proc IEEE. 1989;77(4):541–580.
[15] Zaitsev DA, Sleptsov AI. State equations and equivalent transformations for timed Petri nets. Cybern Syst Anal.

1997;33(5):659–672. DOI: 10.1007/BF02667189
[16] Zaitsev DA. Sleptsov nets run fast. IEEE Trans Syst Man Cybernetics Syst. 2016;46(5):682–693. DOI: 10.1109/TSMC.

2015.2444414
[17] Zaitsev DA. Universal Sleptsov Net. Int J Comput Math. 2017;94(12):2396–2408. DOI: 10.1080/00207160.2017.128

3410
[18] Zaitsev DA. Sleptsov net computing (chapter 672). In: Khosrow-Pour M, editor. Encyclopedia of information science

and technology. 4th ed. IGI-Global; USA. 2017. p. 7731–7743. DOI: 10.4018/978-1-5225-2255-3.ch672.
[19] Zaitsev DA, Li ZW. On simulating turing machines with inhibitor Petri nets. IEEJ Trans Electr Electron Eng.

2018;13(1):147–156. DOI: 10.1002/tee.22508

http://orcid.org/0000-0001-8590-7610
http://orcid.org/0000-0001-8451-5527
http://orcid.org/0000-0001-7453-8821
https://doi.org/10.1109/AQTR49680.2020.9129999
https://doi.org/10.1007/978-3-030-31277-0_5
https://doi.org/ 10.1145/3374549.3374568
https://doi.org/ 10.1109/IRI.2018.00080
https://doi.org/ 10.3390/computers9040094
https://doi.org/ 10.15588/1607-3274-2018-4-13
https://doi.org/ 10.1109/TSMC.2012.2237549
https://doi.org/ 10.1109/ICSA.2018.00022
https://doi.org/10.1007/BFb0042308
https://doi.org/10.1007/BF02667189
https://doi.org/10.1109/TSMC.2015.2444414
https://doi.org/10.1080/00207160.2017.1283410
https://doi.org/10.4018/978-1-5225-2255-3.ch672
https://doi.org/10.1002/tee.22508

18 S. VELYKODNIY ET AL.

[20] Fauzan AC, Sarno R, Yaqin MA. Petri net arithmetic models for scalable business processes. Proceedings of the 3rd
International Conference on Science in Information Technology (ICSITech); 2017; Bandung: IEEE; 2017. p. 104–109.
DOI: 10.1109/ICSITech.2017.8257093

[21] Teng Y, Du Y. Qi L, et al. A logic Petri net-based method for repairing process models with concurrent blocks. IEEE
Access. 2019;7:8266–8282. DOI: 10.1109/access.2018.2890070

[22] Theis J, DarabiH. Behavioral Petri netminingandautomatedanalysis for human-computer interaction recommenda-
tions inmulti-application environments. Proc ACMHuman-Comput Interaction. 2019;3:1–16. DOI: 10.1145/3331155.

[23] Kim R, Gangolly J, Elsas P. A framework for analytics and simulation of accounting information systems: a Petri net
modeling primer. Int J Account Inf Syst. 2017;27:30–54. DOI: 10.1016/j.accinf.2017.09.002

[24] Velykodniy SS, Burlachenko ZV, Zaitseva-Velykodna SS. Graphic databases reengineering in BRL-CAD open-source
computer-aided design environment. Modeling of the behavior part. Trans Kremenchuk Mykhailo Ostrohradskyi
National Univ. 2019;2(115):117–126. DOI: 10.30929/1995-0519.2019.2.117-126

[25] Velykodniy SS. The idealized models of software systems reengineering. Radio Electron Comput Sci Control.
2019;1:150–156. DOI: 10.15588/1607-3274-2019-1-14

https://doi.org/10.1109/ICSITech.2017.8257093
https://doi.org/10.1109/access.2018.2890070
https://doi.org/10.1145/3331155
https://doi.org/10.1016/j.accinf.2017.09.002
https://doi.org/10.30929/1995-0519.2019.2.117-126
https://doi.org/ 10.15588/1607-3274-2019-1-14

	Introduction
	Materials and methods
	Analytical review of sources
	Results of experimental studies
	Modelling of an object diagram
	State machine Diagram Modelling
	Sequence diagram modelling
	Modelling of the activity diagram

	Discussion
	General results obtained
	General conclusions
	Acknowledgments
	Disclosure statement
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

